130 4. Particular Determinants
Referring to the section on differences in Appendix A.8,
φm=∆m
θ 0so that
B=A.
The HankelianBarises in studies by M. Yamazaki and Hori of the Ernst
equation of general relativity andAarises in a related paper by Vein.
Define determinantsU(x),V(x), andW, each of order (n+ 1), by bor-deringAin different ways. Sinceaijis a function ofxandy, it follows that
U(x) andV(x) are also functions ofy. The argumentxinU(x) andV(x)
refers to the variable which appears explicitly in the last row or column.
U(x)=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
xx
3
/ 3[aij]n x5
/ 5···x2 n− 1
/(2n−1)111 ··· 1 •∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
n+1=−
n
∑r=1n
∑s=1Arsx2 r− 12 r− 1, (4.10.24)
V(x)=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1
1 / 3
[aij]n 1 / 5···1 /(2n−1)xx
3
x
5
··· x
2 n− 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1=−
n
∑r=1n
∑s=1Arsx2 s− 12 r− 1, (4.10.25)
W=U(1) =V(1). (4.10.26)
Theorem 4.39.
p2
U2
(x)+q2
U2
(y)=W2
−AW.Proof.
U
2
(x)=∑
i,sAisx2 i− 12 i− 1n
∑j,rAjrx2 j− 12 j− 1=
∑
i,j,r,sAisAjrx2(i+j−1)(2i−1)(2j−1).
Hence,
p2
U2
(x)+q2
U2
(y)−W2