140 4. Particular Determinants
=Kn(
K
− 1
n
Qn−t2
In)
=Kn(
S
2
n
−t2
In)
=Kn(Sn+tIn)(Sn−tIn)=KnHnHn. Corollary.
B
− 1
n =H− 1
n H− 1
n K− 1
n,
[
B(n)
ji]
=
[
H
(n)
ji][
H
(n)
ji][
K
(n)
ji]
.
Lemma.
n
∑i=1h(n)
ij
=x2 j− 1
+t.The proof applies (4.11.3) and is elementary.LetEn+1denote the determinant of order (n+ 1) obtained by borderingHnas follows:
En+1=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
h 11 h 12 ··· h 1 n vn 1 /nh 21 h 22 ··· h 2 n vn 2 /(n+1)..................................hn 1 hn 2 ··· hnn vnn/(2n−1)11 ··· 1 •∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1=−
n
∑r=1n
∑s=1vnrHrsn+r− 1. (4.11.16)
Theorem 4.45.
En+1=(−1)n
Hn− 1.The proof consists of a sequence of row and column operations.Proof. Perform the column operation
C
′
n
=Cn−x2 n− 1
Cn+1 (4.11.17)and apply (6b) withj=n. The result is
En+1=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
h 11 h 12 ··· h 1 ,n− 1 • vn 1 /nh 21 h 22 ··· h 2 ,n− 1 • vn 2 /(n+1)........................................hn 1 hn 2 ··· hn,n− 1 tvnn/(2n−1)11 ··· 11 •∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1. (4.11.18)
Remove the element in position (n, n) by performing the row operation
R
′
n
=Rn−tRn+1. (4.11.19)