4.11 Hankelians 4 147Proof. By interchanging first rows and then columns in a suitable
manner it is easy to show that
En=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
ν 0 ν 1 ν 2 ···ν 1 ν 2 ν 3 ···ν 2 ν 3 ν 4 ···ν 1 ν 2 ···ν 2 ν 3 ···∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n. (4.11.53)
Hence, referring to Theorems 4.11.5 and 4.11.6b,
E 2 n=(−1)n
AnA(n+1)
n+1, 1=(−1)
n
2−(2n−1)
2
,E 2 n+1=(−1)n
An+1A(n+1)
n+1, 1=(−1)
n
2− 4 n
2. (4.11.54)
These two results can be combined into one as shown in the theorem which
is applied in Section 4.12.1 to evaluate|Pm(x)|n.
Exercise.If
Bn=∣
∣
∣
∣
(
2 mm)∣
∣
∣
∣
n, 0 ≤m≤ 2 n− 2 ,prove that
Bn=2n− 1
,B
(n)
ij=2
2[n(n−1)−(i+j−2)]
A(n)
ij,
B
(n)
n 1=2
n− 14.11.4 A Nonlinear Differential Equation..........
Let
Gn(x, h, k)=|gij|n,where
gij={
x
h+i+k− 1h+i+k− 1
,j=k1
h+i+j− 1
,j=k.(4.11.55)
Every column inGnexcept columnkis identical with the corresponding
column in the generalized Hilbert determinantKn(h). Also, let
Gn(x, h)=n
∑k=1Gn(x, h, k). (4.11.56)