Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.13 Hankelians 6 165

Substituting this formula into (4.12.50) withAn→E


(p)
n andE

(1)
n =f,

E

(p)
n

=

(

e

t

1 −e
t

)p n− 1

r=1

[

(n−r)(p+n−r−1)

e

t

(1−e
t
)
2

]r

, (4.12.57)

which yields the stated formula. 


Note that the substitutionx=e
t
yields

ψ

(1)
m =ψm,

E

(1)
n =En,

so thatψ


(p)
m may be regarded as a further generalization of the geometric

seriesψmandE


(p)
n is a generalization of Lawden’s determinantEn.

Exercise.If


f=

{

sec

p
x

cosec

p
x

,

prove that


An=

{

sec

n(p+n−1)
x

cosec

n(p+n−1)

n− 1

r=1

r!(p)r.

4.13 Hankelians 6


4.13.1 Two Matrix Identities and Their Corollaries....


Define three matricesM,K, andNof ordernas follows:


M=[αij]n (symmetric),

K=[2

i+j− 1
ki+j− 2 ]n (Hankel),

N=[βij]n (lower triangular),

(4.13.1)

where


αij=

{

(−1)

j− 1
ui−j+ui+j− 2 ,j≤i

(−1)
i− 1
uj−i+ui+j+2,j≥i;

(4.13.2)

ur=

N

j=1

ajfr(xj),ajarbitrary; (4.13.3)

fr(x)=

1
2

{

(x+


1+x
2
)

r
+(x−


1+x
2
)

r

}

; (4.13.4)

kr=

N

j=1

ajx

r
j

; (4.13.5)

βij=0,j>iori+jodd,
Free download pdf