164 4. Particular Determinants
=
∞
∑r=0(p)re(r+p)tr!,
where
(p)r=p(p+ 1)(p+2)···(p+r−1) (4.12.52)and denote the corresponding determinant byE
(p)
n :E
(p)
n =∣
∣
ψ(p)
m∣
∣
n, 0 ≤m≤ 2 n− 2 ,where
ψ(p)
m=D
m
f=
∞
∑r=0(p)r(r+p)
m
e
(r+p)tr!. (4.12.53)
Theorem 4.59.
E
(p)
n =e
n(2p+n−1)t/ 2(1−e
t
)
n(p+n−1)n− 1
∏r=1r!(p)r.Proof. Put
gr=αret(1−e
t
)
2,αrconstant,and note that, from (4.12.48),
g 1 =D2
(logf)=
pet(1−et)^2,
so thatα 1 =pand
loggr= logαr+t−2 log(1−et
),D
2
(loggr)=2 et(1−e
t
)
2. (4.12.54)
Substituting these functions into the differential–difference equation, it is
found that
αn=nα 1 +2n− 1
∑r=1(n−r)=n(p+n−1). (4.12.55)Hence,
gn=n(p+n−1)e
t(1−e
t
)
2,
gn−r=(n−r)(p+n−r−1)et(1−e
t
)
2