Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

168 4. Particular Determinants


Define three other matricesM

,K

, andN

of ordernas follows:

M


=[α


ij]n (symmetric),

K


=[2

i+j− 1
(ki+j+ki+j− 2 )]n (Hankel),

N


=[β


ij
]n (lower triangular),

(4.13.14)

wherekris defined in (4.13.5);


α


ij

=

{

(−1)

j− 1
ui−j+ui+j,j≤i

(−1)

i− 1
uj−i+ui+j,j≥i,

(4.13.15)

β


ij=0,j>iori+jodd,

β


2 i, 2 j=

1
2
μij, 1 ≤j≤i,

β


2 i+1, 2 j+1=λij+

1
2
μij, 0 ≤j≤i. (4.13.16)

The functionsλijand


1
2
μijappear in Appendix A.10.μij=(2j/i)λij.

Theorem 4.61.


M=N


K(N


)

T
.

The details of the proof are similar to those of Theorem 4.60.

Let

N


K


(N


)

T
=[γ


ij]n

and consider the four cases separately. It is found with the aid of


Theorem A.8(e) in Appendix A.10 that


γ


2 p+1, 2 q+1

=

N

j=1

aij

{

gq−p(xj)+gq+p+1(xj)

}



2 p+1, 2 q+1

(4.13.17)

and further thatγ



ij=α


ijfor all values ofiandj.

Corollary.




ij|n=|M


|n=|N


|

2
n|K


|n

=|β


ij|

2
n^2

n


∣ 2 i+j−^2 (k
i+j+ki+j− 2 )



n

=2

n
2
|ki+j+ki+j− 2 |n (4.13.18)

sinceβ



ii= 1 for all values ofi. Thus,M


can also be expressed as a

Hankelian.


4.13.2 The Factors of a Particular Symmetric Toeplitz


Determinant


The determinants


Pn=

1
2

|pij|n,
Free download pdf