4.13 Hankelians 6 167the upper limits that
γij=i
∑r=1j
∑s=1βir 2r+s− 1
kr+s− 2 βjs.Hence,
γ 2 p+1, 2 q+1=22 p+1
∑r=12 q+1
∑s=1β 2 p+1,r 2r+s− 2
kr+s− 2 β 2 q+1,s. (4.13.10)From the first line of (4.13.6), the summand is zero whenrandsare even.
Hence, replacerby 2r+ 1, replacesby 2s+ 1 and refer to (4.13.5) and
(4.13.6),
γ 2 p+1, 2 q+1=2p
∑r=0q
∑s=0β 2 p+1, 2 r+1β 2 q+1, 2 s+1 22 r+2s
k 2 r+2s=2
p
∑r=0q
∑s=0λprλqsN
∑j=1aj(2xj)2 r+2s=2
N
∑j=1ajp
∑r=0λpr(2xj)2 rq
∑s=0λqs(2xj)2 s=2
N
∑j=1ajgp(xj)gq(xj)=α 2 p+1, 2 q+1, (4.13.11)which completes the proof of case (i). Cases (ii)–(iv) are proved in a similar
manner.
Corollary.
|αij|n=|M|n=|N|2
n|K|n=|βij|2
n| 2
i+j− 1
ki+j− 2 |n=
(
n
∏i=1βii) 2
2
n
| 2i+j− 2
ki+j− 2 |n. (4.13.12)But,β 11 =1andβii=
1
2
, 2 ≤i≤n. Hence, referring to Property (e) inSection 2.3.1,
|αij|n=2n
2
− 2 n+2
|ki+j− 2 |n. (4.13.13)Thus,Mcan be expressed as a Hankelian.