5.1 Determinants Which Represent Particular Polynomials 175But
a′
ij
+ai− 1 ,j=[(
j− 1i− 1)
+
(
j− 1i− 2)]
u(j−i+1)−
[(
j− 1i− 2)
+
(
j− 1i− 3)]
v(j−i+2)=
(
ji− 1)
u(j−i+1)
−(
ji− 2)
v(j−i+2)=ai,j+1. (5.1.13)Hence,
C
′
j+C∗
j=Cj+1, (5.1.14)A
′
n=n
∑j=1∣
∣
C 1 C 2 ···C
′
jCj+1···Cn−^1 Cn∣
∣
n,
A
(n+1)
n+1,n=−
∣
∣C
1 C 2 ···CjCj+1···Cn− 1 Cn+1∣
∣
n. (5.1.15)
Hence,
A
′
n+A(n+1)
n+1,n=
n
∑j=1∣
∣
C 1 C 2 ···(C
′
j−Cj+1)Cj+1···Cn∣
∣
n=−
n
∑j=1∣
∣C
1 C 2 ···C
∗
j
···Cn∣
∣
=0
by Theorem 3.1 on cyclic dislocations and generalizations in Section 3.1,
which proves (a).
ExpandingAn+1by the two elements in its last row,An+1=(u−nv′
)An−vA(n+1)
n+1,n=(u−nv′
)An+vA′
n=v[
A
′
n+
(
uv−
nv′v)
An]
,
yAn+1v
n+1=
yv
n[
A
′
n+
(
y
′y−
nv
′v)
An]
=
yA′
nv
n+
(
yv
n)′
An=D
(
yAnv
n)
=D
2(
yAn− 1v
n− 1)
=D
r(
yAn−r+1v
n−r+1)
, 0 ≤r≤n