5.1 Determinants Which Represent Particular Polynomials 1772.Hn(x)=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2 x 212 x 412 x 612 x 8··· ··· ··· ···2 x 2 n− 212 x∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
3.Pn(x)=
1
n!∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
x 113 x 225 x 337 x 4··· ··· ··· ···(2n−3)xn− 1n−1(2n−1)x∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n(Muir and Metzler).4.Pn(x)=
1
2 nn!
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2 nx 2 n1 −x2
(2n−2)x 4 n− 21 −x2
(2n−4)x 6 n− 61 −x2
(2n−6)x··· ··· ···4 xn2
+n− 21 −x2
2 x∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
5.Let
An=|aij|n=∣
∣
C 1 C 2 C 3 ···Cn∣
∣
,
whereaij=u(j−1)=
(
j− 1i− 2)
v
(j−i+1)
, 2 ≤i≤j+1,0 , otherwise,and letC
∗
j=[
O 2 a 2 ja 3 j···an− 1 ,j]T
.
Prove thatC
′
j+C
∗
j
=Cj+1,A
′
n+A(n+1)
n+1,n=0and hence prove thatAn=(−1)n+1
vn
Dn− 1(
uv