Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
5.1 Determinants Which Represent Particular Polynomials 177

2.Hn(x)=


∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

2 x 2

12 x 4

12 x 6

12 x 8

··· ··· ··· ···

2 x 2 n− 2

12 x

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

3.Pn(x)=


1

n!

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

x 1

13 x 2

25 x 3

37 x 4

··· ··· ··· ···

(2n−3)xn− 1

n−1(2n−1)x

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

(Muir and Metzler).

4.Pn(x)=


1

2 nn!
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2 nx 2 n

1 −x

2
(2n−2)x 4 n− 2

1 −x

2
(2n−4)x 6 n− 6

1 −x

2
(2n−6)x

··· ··· ···

4 xn

2
+n− 2

1 −x

2
2 x

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

5.Let


An=|aij|n=



C 1 C 2 C 3 ···Cn



,

where

aij=u

(j−1)

=




(

j− 1

i− 2

)

v
(j−i+1)
, 2 ≤i≤j+1,

0 , otherwise,

and let

C


j=

[

O 2 a 2 ja 3 j···an− 1 ,j

]T

.

Prove that

C


j

+C


j
=Cj+1,

A


n+A

(n+1)
n+1,n=0

and hence prove that

An=(−1)

n+1
v

n
D

n− 1

(

u

v

)

.
Free download pdf