204 5. Further Determinant Theory
=
QnPn, (5.5.8)
wherePnandQneach satisfy the recurrence relation
Rn=Rn− 1 +anxRn− 2 (5.5.9)withP 0 =1,P 1 =1+a 1 x,Q 0 = 1, andQ 1 = 1. It follows that
P 2 =1+(a 1 +a 2 )x,Q 2 =1+a 2 x,P 3 =1+(a 1 +a 2 +a 3 )x+a 1 a 3 x2
,Q 3 =1+(a 2 +a 3 )x,P 4 =1+(a 1 +a 2 +a 3 +a 4 )x+(a 1 a 3 +a 1 a 4 +a 2 a 4 )x2
,Q 4 =1+(a 2 +a 3 +a 4 )x+a 2 a 4 x2. (5.5.10)
It also follows from the previous section thatPn=Hn+1, etc., where
Hn+1=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1 a 1 x− 11 a 2 x− 11 a 3 x.
.
..
.
.
.
.
.
− 11 an− 2 x− 11 an− 1 x− 11∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1. (5.5.11)
The alternative formula
Hn+1=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
1 x−a 1 1 x−a 2 1 x.
.
..
.
.
.
.
.
−an− 3 1 x−an− 2 1 x−an− 1 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
n+1(5.5.12)
can be proved by showing that the second determinant satisfies the same
recurrence relation as the first determinant and has the same initial values.
Also,
Qn=H(n+1)
11. (5.5.13)Using elementary methods, it is found that
f 1 =1−a 1 x+a2
1 x2
+···,f 2 =1−a 1 x+a 1 (a 1 +a 2 )x2
−a 1 (a2
1 +2a^1 a^2 +a2
2 )x3
+···,f 3 =1−a 1 x+a 1 (a 1 +a 2 )x2
−a 1 (a2
1
+2a 1 a 2 +a2
2
+a 2 a 3 )x3
+···+a 1 (a3
1
+3a2
1
a 2 +3a 1 a2
2
+2a3
2
+2a2
2
a 3+a 2 a2
3
+2a 1 a 2 a 3 )x4
+···, (5.5.14)