Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

204 5. Further Determinant Theory


=

Qn

Pn

, (5.5.8)

wherePnandQneach satisfy the recurrence relation


Rn=Rn− 1 +anxRn− 2 (5.5.9)

withP 0 =1,P 1 =1+a 1 x,Q 0 = 1, andQ 1 = 1. It follows that


P 2 =1+(a 1 +a 2 )x,

Q 2 =1+a 2 x,

P 3 =1+(a 1 +a 2 +a 3 )x+a 1 a 3 x

2
,

Q 3 =1+(a 2 +a 3 )x,

P 4 =1+(a 1 +a 2 +a 3 +a 4 )x+(a 1 a 3 +a 1 a 4 +a 2 a 4 )x

2
,

Q 4 =1+(a 2 +a 3 +a 4 )x+a 2 a 4 x

2

. (5.5.10)


It also follows from the previous section thatPn=Hn+1, etc., where


Hn+1=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

1 a 1 x

− 11 a 2 x

− 11 a 3 x

.
.
.

.

.

.

.

.

.

− 11 an− 2 x

− 11 an− 1 x

− 11

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

. (5.5.11)

The alternative formula


Hn+1=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣


1 x

−a 1 1 x

−a 2 1 x

.
.
.

.

.

.

.

.

.

−an− 3 1 x

−an− 2 1 x

−an− 1 1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣


n+1

(5.5.12)

can be proved by showing that the second determinant satisfies the same


recurrence relation as the first determinant and has the same initial values.


Also,


Qn=H

(n+1)
11. (5.5.13)

Using elementary methods, it is found that


f 1 =1−a 1 x+a

2
1 x

2
+···,

f 2 =1−a 1 x+a 1 (a 1 +a 2 )x

2
−a 1 (a

2
1 +2a^1 a^2 +a

2
2 )x

3
+···,

f 3 =1−a 1 x+a 1 (a 1 +a 2 )x

2
−a 1 (a

2
1
+2a 1 a 2 +a

2
2
+a 2 a 3 )x

3
+···

+a 1 (a

3
1
+3a

2
1
a 2 +3a 1 a

2
2
+2a

3
2
+2a

2
2
a 3

+a 2 a

2
3
+2a 1 a 2 a 3 )x

4
+···, (5.5.14)
Free download pdf