Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

224 5. Further Determinant Theory


=



m=0

z

m
um+1

m!



r=0

z

r
Fr

r!

. (5.7.13)

Equating coefficients ofz


n
,

Fn+1

n!

=

n

r=0

ur+1Fn−r

r!(n−r)!

,

Fn+1=

n

r=0

(

n

r

)

ur+1Fn−r. (5.7.14)

This recurrence relation inFnis identical in form to the recurrence relation


inEngiven in (5.7.7). Furthermore,


E 1 =F 1 =u 1 ,

E 2 =F 2 =u

2
1
+u 2.

Hence,


En=Fn

which proves the theorem.


Second proof.Express the lemma in the form



i=0

z
i

i!

H

i
(f, g)=f(x+z)g(x−z). (5.7.15)

Hence,


H

i
(f, g)=

[

D

i
z
{f(x+z)g(x−z)}

]

z=0

. (5.7.16)

Put


f(x)=e

F(x)
,

g(x)=e

G(x)
,

w=F(x+z)+G(x−z).

Then,


H

i
(e

F
,e

G
)=

[

D

i
z(e

w
)

]

z=0

=

[

D

i− 1
z
(e

w
wz)

]

z=0

=

i− 1

j=0

(

i− 1

j

)

[

D

i−j
z
(w)D

j
z
(e

w
)

]

z=0

=

i− 1

j=0

(

i− 1

j

)

ψi−jH

j
(e

F
,e

G
),i≥ 1 , (5.7.17)

where


ψr=

[

D

r
z
(w)

]

z=0
Free download pdf