230 5. Further Determinant Theory
Hence,
∣ ∣ ∣ ∣ ∣ ∣
Br+4 Br+3 Br+2Br+3 Br+2 Br+1Br+2 Br+1 Br∣ ∣ ∣ ∣ ∣ ∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣
A
(5)
12 , 12A
(5)
12 , 15A
(5)
12 , 45A
(5)
15 , 12 A(5)
15 , 15 A(5)
15 , 45A
(5)
45 , 12A
(5)
45 , 15A
(5)
45 , 45∣ ∣ ∣ ∣ ∣ ∣ ∣
. (5.8.8)
Denote the determinant on the right byV 3. Then,V 3 is not a standard
third-order Jacobi determinant which is of the form
|A
(n)
pq|^3 or |A(n)
gp,hq
| 3 ,p=i, j, k, q=r, s, t.However,V 3 can be regarded as a generalized Jacobi determinant in which
the elements have vector parameters:
V 3 =|A
(5)
uv|^3 , (5.8.9)whereuandv=[1,2], [1,5], and [4,5], andA
(5)
uv
is interpreted as a secondcofactor ofA 5. It may be verified that
V 3 =A
(5)
125;125A
(5)
145;145
A 5 +φ 4 (A(5)
15)
2
(5.8.10)and that if
V 3 =|A
(4)
uv|^3 , (5.8.11)whereuandv=[1,2], [1,4], and [3,4], then
V 3 =A
(4)
124;124A
(4)
134;134A 4 +(A
(4)
14)
2. (5.8.12)
These results suggest the following conjecture:
Conjecture.If
V 3 =|A
(n)
uv| 3 ,
whereuandv=[1,2], [1,n], and [n− 1 ,n], then
V 3 =A
(n)
12 n;12nA(n)
1 ,n− 1 ,n;1,n− 1 ,nAn+A(n)
12 ,n− 1 ,n;12,n− 1 ,n(A(n)
1 n)2
.Exercise.If
V 3 =|A
(4)
uv|,
where
u=[1,2],[1,3],and [2,4],v=[1,2],[1,3],and [2,3].prove that
V 3 =−φ 5 φ 6 A 4.