Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

230 5. Further Determinant Theory


Hence,


∣ ∣ ∣ ∣ ∣ ∣

Br+4 Br+3 Br+2

Br+3 Br+2 Br+1

Br+2 Br+1 Br

∣ ∣ ∣ ∣ ∣ ∣

=

∣ ∣ ∣ ∣ ∣ ∣ ∣

A

(5)
12 , 12

A

(5)
12 , 15

A

(5)
12 , 45

A

(5)
15 , 12 A

(5)
15 , 15 A

(5)
15 , 45

A

(5)
45 , 12

A

(5)
45 , 15

A

(5)
45 , 45

∣ ∣ ∣ ∣ ∣ ∣ ∣

. (5.8.8)

Denote the determinant on the right byV 3. Then,V 3 is not a standard


third-order Jacobi determinant which is of the form


|A

(n)
pq|^3 or |A

(n)
gp,hq
| 3 ,p=i, j, k, q=r, s, t.

However,V 3 can be regarded as a generalized Jacobi determinant in which


the elements have vector parameters:


V 3 =|A

(5)
uv|^3 , (5.8.9)

whereuandv=[1,2], [1,5], and [4,5], andA


(5)
uv
is interpreted as a second

cofactor ofA 5. It may be verified that


V 3 =A

(5)
125;125

A

(5)
145;145
A 5 +φ 4 (A

(5)
15

)

2
(5.8.10)

and that if


V 3 =|A

(4)
uv|^3 , (5.8.11)

whereuandv=[1,2], [1,4], and [3,4], then


V 3 =A

(4)
124;124

A

(4)
134;134

A 4 +(A

(4)
14

)

2

. (5.8.12)


These results suggest the following conjecture:


Conjecture.If


V 3 =|A

(n)
uv

| 3 ,

whereuandv=[1,2], [1,n], and [n− 1 ,n], then


V 3 =A

(n)
12 n;12nA

(n)
1 ,n− 1 ,n;1,n− 1 ,nAn+A

(n)
12 ,n− 1 ,n;12,n− 1 ,n(A

(n)
1 n)

2
.

Exercise.If


V 3 =|A

(4)
uv

|,

where


u=[1,2],[1,3],and [2,4],

v=[1,2],[1,3],and [2,3].

prove that


V 3 =−φ 5 φ 6 A 4.
Free download pdf