258 6. Applications of Determinants in Mathematical Physics
Hence, referring to the first equation in (4.5.10),
[
B(n+1)
1 ,n+1] 2
y′
2 n
=(2n+1)BnBn+1,BnBn+1(y 2 n− 1 −y 2 n+1)=BnB(n+1)
11
−Bn+1B(n)
11=B
(n+1)
n+1,n+1B
(n+1)
11
−Bn+1B(n+1)
1 ,n+1;1,n+1=
[
B
(n+1)
1 ,n+1] 2
Hence,
y′
2 n(y^2 n−^1 −y^2 n+1)=2n+1,which proves the theorem whennis even.
6.6 The Matsukidaira–Satsuma Equations
6.6.1 A System With One Continuous and One Discrete
Variable
LetA
(n)
(r) denote the Turanian–Wronskian of orderndefined as follows:
A
(n)
(r)=∣
∣f
r+i+j− 2∣
∣
n, (6.6.1)
wherefs=fs(x) andf
′
s=fs+1. Then,A
(n)
11 (r)=A(n−1)
(r+2),A
(n)
1 n
(r)=A(n−1)
(r+1).Let
τr=A(n)
(r). (6.6.2)Theorem 6.7.
∣
∣
∣
∣
τr+1 τrτr τr− 1∣
∣
∣
∣
∣
∣
∣
∣
τ′′
r τ′
rτ′
r τr∣
∣
∣
∣
=
∣
∣
∣
∣
τ′
r+1 τr+1τ′
r τr∣
∣
∣
∣
∣
∣
∣
∣
τ′
r τrτ′
r− 1 τr−^1∣
∣
∣
∣
for all values ofnand all differentiable functionsfs(x).
Proof. Each of the functions
τr± 1 ,τr+2,τ′
r,τ′′
r,τ′
r± 1can be expressed as a cofactor ofA
(n+1)
with various parameters:τr=A(n+1)
n+1,n+1
(r),τr+1=(−1)n
A(n+1)
1 ,n+1
(r)=(−1)
n
A(n+1)
n+1, 1 (r)τr+2=A(n+1)
11
(r).