Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 265

Eliminating the sum common to (6.7.3) and (6.7.5) and the sum common


to (6.7.4) and (6.7.6),


v=Dx(logA)=


r


s

A

rs


r

br, (6.7.7)

Dx(A

ij
)=

1
2

(bi+bj)A

ij


r


s

A

is
A

rj

. (6.7.8)


Returning to (A) and (B),


Dt(logA)=


r

b

3
rerA

rr
, (6.7.9)

Dt(A

ij
)=−


r

b

3
r
erA

ir
A

rj

. (6.7.10)


Now return to (C) and (D) withfr=gr=b
3
r


.


r

b

3
r
erA

rr
+


r


s

(b

2
r
−brbs+b

2
s

)A

rs
=


r

b

3
r

, (6.7.11)


r

b

3
r
erA

ir
A

rj
+


r


s

(b

2
r
−brbs+b

2
s

)A

is
A

rj

=

1
2
(b

3
i+b

3
j)A

ij

. (6.7.12)


Eliminating the sum common to (6.7.9) and (6.7.11) and the sum common


to (6.7.10) and (6.7.12),


Dt(logA)=


r

b

3
r−


r


s

(b

2
r−brbs+b

2
s)A

rs
, (6.7.13)

Dt(A

ij
)=


r


s

(b

2
r−brbs+b

2
s)A

is
A

rj

1
2
(b

3
i+b

3
j)A

ij
.(6.7.14)

The derivativesvxandvtcan be evaluated in a convenient form with the


aid of two functionsψisandφijwhich are defined as follows:


ψis=


r

b

i
rA

rs
, (6.7.15)

φij=


s

b

j
sψis,

=


r


s

b

i
rb

j
sA

rs

=φji. (6.7.16)

They are definitions ofψisandφij. 


Lemma.The function φij satisfies the three nonlinear recurrence rela-


tions:


a.φi 0 φj 1 −φj 0 φi 1 =

1
2

(φi+2,j−φi,j+2),

b.Dx(φij)=


1
2

(φi+1,j+φi,j+1)−φi 0 φj 0 ,
Free download pdf