6.7 The Korteweg–de Vries Equation 267=0+
1
2
∑
p,r(bi+2
p
bj
r
−bj+2
p
bi
r)A
pr=
1
2
(φi+2,j−φi,j+2),which is identical with the right side of (a). This completes the proof of
(a).
Referring to (6.7.8) withr, s→p, qandi, j→r, s,Dx(φij)=∑
r∑
sbi
rbj
sDx(Ars
)=
∑
r∑
sbi
r
bj
s[
1
2
(br+bs)Ars
−∑
p∑
qA
rq
Aps]
=
1
2
∑
r∑
sbi
r
bj
s
(br+bs)Ars
−∑
q,rbi
rA
rq∑
p,sbj
sA
ps=
1
2
(φi+1,j+φi,j+1)−φi 0 φj 0 ,which proves (b). Part (c) is proved in a similar manner.
Particular cases of (a)–(c) areφ 00 φ 11 −φ2
10=
1
2(φ 21 −φ 03 ), (6.7.18)Dx(φ 00 )=φ 10 −φ2
00,
Dt(φ 00 )=2φ 00 φ 20 −φ2
10
−φ 30. (6.7.19)The preparations for finding the derivatives ofvare now complete. The
formula forvgiven by (6.7.7) can be written
v=φ 00 −constant.Differentiating with the aid of parts (b) and (c) of the lemma,
vx=φ 10 −φ2
00 ,vxx=1
2(φ 20 +φ 11 − 6 φ 00 φ 10 +4φ3
00),
vxxx=1
4(φ 30 +3φ 21 − 8 φ 00 φ 20 − 14 φ2
10,
+48φ2
00 φ^10 −^6 φ^00 φ^11 −^24 φ4
00 )vt=2φ 00 φ 20 −φ2
10 −φ^30. (6.7.20)Hence, referring to (6.7.18),
4(vt+6v2
x+vxxx)=3[
(φ 21 −φ 30 )−2(φ 00 φ 11 −φ2
10 )]
=0,
which completes the verification of the first form of solution of the KdV
equation by means of recurrence relations.