Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

270 6. Applications of Determinants in Mathematical Physics


Hence,


vx=−


r

brer

∂v

∂er

=


r

brerθr. (6.7.35)

Similarly,


vt=−


r

b

3
rerθr. (6.7.36)

From (6.7.35) and (6.7.23),


∂vx

∂eq

=


r

br

(

δqrθr+er

∂θr

∂eq

)

=bqθq+


r

brer

∂θr

∂eq

. (6.7.37)

Referring to (6.7.32),



2
vx

∂ep∂eq

=bq

∂θq

∂ep

+


r

br

(

δpr

∂θr

∂eq

+er


2
θr

∂ep∂eq

)

=(bp+bq)

∂θp

∂eq

+


r

brer


2
θr

∂ep∂eq

. (6.7.38)

To obtain a formula forvxxx, puty=vxin (6.7.22), apply (6.7.37) with

q→pandr→q, and then apply (6.7.38):


vxxx=


p

b

2
pep

∂vx

∂ep

+


p,q

bpbqepeq


2
vx

∂ep∂eq

=


p

b

2
p
ep

[

bpθp+


q

bqeq

∂θq

∂ep

]

+


p,q

bpbqepeq

[

(bp+bq)

∂θp

∂eq

+


r

brer


2
θr

∂ep∂eq

]

=Q+R+S+T (6.7.39)

where, from (6.7.36), (6.7.32), and (6.7.31),


Q=


p

b

3
p
epθp

=−vt

R=


p,q

b

2
p
bqepeq

∂θp

∂eq
Free download pdf