270 6. Applications of Determinants in Mathematical Physics
Hence,
vx=−
∑
r
brer
∂v
∂er
=
∑
r
brerθr. (6.7.35)
Similarly,
vt=−
∑
r
b
3
rerθr. (6.7.36)
From (6.7.35) and (6.7.23),
∂vx
∂eq
=
∑
r
br
(
δqrθr+er
∂θr
∂eq
)
=bqθq+
∑
r
brer
∂θr
∂eq
. (6.7.37)
Referring to (6.7.32),
∂
2
vx
∂ep∂eq
=bq
∂θq
∂ep
+
∑
r
br
(
δpr
∂θr
∂eq
+er
∂
2
θr
∂ep∂eq
)
=(bp+bq)
∂θp
∂eq
+
∑
r
brer
∂
2
θr
∂ep∂eq
. (6.7.38)
To obtain a formula forvxxx, puty=vxin (6.7.22), apply (6.7.37) with
q→pandr→q, and then apply (6.7.38):
vxxx=
∑
p
b
2
pep
∂vx
∂ep
+
∑
p,q
bpbqepeq
∂
2
vx
∂ep∂eq
=
∑
p
b
2
p
ep
[
bpθp+
∑
q
bqeq
∂θq
∂ep
]
+
∑
p,q
bpbqepeq
[
(bp+bq)
∂θp
∂eq
+
∑
r
brer
∂
2
θr
∂ep∂eq
]
=Q+R+S+T (6.7.39)
where, from (6.7.36), (6.7.32), and (6.7.31),
Q=
∑
p
b
3
p
epθp
=−vt
R=
∑
p,q
b
2
p
bqepeq
∂θp
∂eq