270 6. Applications of Determinants in Mathematical Physics
Hence,
vx=−∑
rbrer∂v∂er=
∑
rbrerθr. (6.7.35)Similarly,
vt=−∑
rb3
rerθr. (6.7.36)From (6.7.35) and (6.7.23),
∂vx∂eq=
∑
rbr(
δqrθr+er∂θr∂eq)
=bqθq+∑
rbrer∂θr∂eq. (6.7.37)
Referring to (6.7.32),
∂
2
vx∂ep∂eq=bq∂θq∂ep+
∑
rbr(
δpr∂θr∂eq+er∂
2
θr∂ep∂eq)
=(bp+bq)∂θp∂eq+
∑
rbrer∂
2
θr∂ep∂eq. (6.7.38)
To obtain a formula forvxxx, puty=vxin (6.7.22), apply (6.7.37) withq→pandr→q, and then apply (6.7.38):
vxxx=∑
pb2
pep∂vx∂ep+
∑
p,qbpbqepeq∂
2
vx∂ep∂eq=
∑
pb2
p
ep[
bpθp+∑
qbqeq∂θq∂ep]
+
∑
p,qbpbqepeq[
(bp+bq)∂θp∂eq+
∑
rbrer∂
2
θr∂ep∂eq]
=Q+R+S+T (6.7.39)
where, from (6.7.36), (6.7.32), and (6.7.31),
Q=
∑
pb3
p
epθp=−vtR=
∑
p,qb2
p
bqepeq∂θp∂eq