Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

272 6. Applications of Determinants in Mathematical Physics


Proof.


D

j
x
(φi)=

(

1
2

bi

)j
e

− 1 / 2
i

[(−1)

j
λiei+μi]

so that every element in rowiofW contains the factore


− 1 / 2
i. Removing

all these factors from the determinant,


(e 1 e 2 ...en)

1 / 2
W

=

∣ ∣ ∣ ∣ ∣ ∣ ∣

λ 1 e 1 +μ 1

1
2
b 1 (−λ 1 e 1 +μ 1 )(

1
2
b 1 )

2
(λ 1 e 1 +μ 1 ) ···

λ 2 e 2 +μ 2

1
2
b 2 (−λ 2 e 2 +μ 2 )(

1
2
b 2 )

2
(λ 2 e 2 +μ 2 ) ···

λ 3 e 3 +μ 3

1
2
b 3 (−λ 3 e 3 +μ 3 )(

1
2
b 3 )

2
(λ 3 e 3 +μ 3 ) ···

....................................................

∣ ∣ ∣ ∣ ∣ ∣ ∣ n

(6.7.45)

Now remove the fractions from the elements of the determinant by mul-

tiplying columnjby 2


j− 1
,1≤j≤n, and compensate for the change in

the value of the determinant by multiplying the left side by


2

1+2+3···+(n−1)
=2

n(n−1)/ 2
.

The result is


2

n(n−1)/ 2
(e 1 e 2 ···en)

1 / 2
W=|αijei+βij|n, (6.7.46)

where


αij=(−bi)

j− 1
λi,

βij=b

j− 1
i μi. (6.7.47)

The determinants|αij|n,|βij|nare both Vandermondians. Denote them by


UnandVn, respectively, and use the notation of Section 4.1.2:


Un=|αij|n=(λ 1 λ 2 ···λn)


∣(−b
i)

j− 1



n

,

=(λ 1 λ 2 ···λn)[Xn]x
i=−bi

, (6.7.48)

Vn=|βij|n.

The determinant on the right-hand side of (6.7.46) is identical in form


with the determinant|aijxi+bij|nwhich appears in Section 3.5.3. Hence,


applying the theorem given there with appropriate changes in the symbols,


|αijei+βij|n=Un|Eij|n,

where


Eij=δijei+

K

(n)
ij

Un

(6.7.49)

and whereK


(n)
ij is the hybrid determinant obtained by replacing rowi

ofUnby rowj ofVn. Removing common factors from the rows of the


determinant,


K

(n)
ij
=(λ 1 λ 2 ···λn)

μj

λi

[

H

(n)
ij

]

yi=−xi=bi

.
Free download pdf