272 6. Applications of Determinants in Mathematical Physics
Proof.
D
j
x
(φi)=(
1
2bi)j
e− 1 / 2
i[(−1)
j
λiei+μi]so that every element in rowiofW contains the factore
− 1 / 2
i. Removingall these factors from the determinant,
(e 1 e 2 ...en)1 / 2
W=
∣ ∣ ∣ ∣ ∣ ∣ ∣
λ 1 e 1 +μ 11
2
b 1 (−λ 1 e 1 +μ 1 )(1
2
b 1 )2
(λ 1 e 1 +μ 1 ) ···λ 2 e 2 +μ 21
2
b 2 (−λ 2 e 2 +μ 2 )(1
2
b 2 )2
(λ 2 e 2 +μ 2 ) ···λ 3 e 3 +μ 31
2
b 3 (−λ 3 e 3 +μ 3 )(1
2
b 3 )2
(λ 3 e 3 +μ 3 ) ···....................................................∣ ∣ ∣ ∣ ∣ ∣ ∣ n(6.7.45)
Now remove the fractions from the elements of the determinant by mul-tiplying columnjby 2
j− 1
,1≤j≤n, and compensate for the change inthe value of the determinant by multiplying the left side by
2
1+2+3···+(n−1)
=2n(n−1)/ 2
.The result is
2
n(n−1)/ 2
(e 1 e 2 ···en)1 / 2
W=|αijei+βij|n, (6.7.46)where
αij=(−bi)j− 1
λi,βij=bj− 1
i μi. (6.7.47)The determinants|αij|n,|βij|nare both Vandermondians. Denote them by
UnandVn, respectively, and use the notation of Section 4.1.2:
Un=|αij|n=(λ 1 λ 2 ···λn)∣
∣(−b
i)j− 1∣
∣
n,
=(λ 1 λ 2 ···λn)[Xn]x
i=−bi, (6.7.48)
Vn=|βij|n.The determinant on the right-hand side of (6.7.46) is identical in form
with the determinant|aijxi+bij|nwhich appears in Section 3.5.3. Hence,
applying the theorem given there with appropriate changes in the symbols,
|αijei+βij|n=Un|Eij|n,where
Eij=δijei+K
(n)
ijUn(6.7.49)
and whereK
(n)
ij is the hybrid determinant obtained by replacing rowiofUnby rowj ofVn. Removing common factors from the rows of the
determinant,
K
(n)
ij
=(λ 1 λ 2 ···λn)μjλi[
H
(n)
ij]
yi=−xi=bi