Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

282 6. Applications of Determinants in Mathematical Physics


6.9.2 Three Determinants..................


The determinantAand its cofactors are closely related to the Matsuno


determinantEand its cofactor (Section 5.4)


A=KnE,

2 crArs=KnErs,

4 crcsArs,rs=KnErs,rs,

where


Kn=2

n

n

r=1

cr. (6.9.4)

The proofs are elementary. It has been proved that


n

r=1

Err=

n

r=1

n

s=1

Ers,

n

r=1

n

s=1

Ers,rs=− 2

n

r=1

n

s− 1


csErs.

It follows that


n

r=1

crArr=

n

r=1

n

s=1

crArs (6.9.5)

n

r=1

n

s=1

crcsArs,rs=−

n

r=1

n

s=1


crcsArs. (6.9.6)

Define the determinantBas follows:


B=|bij|n,

where


bij=




aij− 1
ci+cj
ci−cj

,j=i

ωθi,j=i (ω

2
=−1).

(6.9.7)

It may be verified that, for all values ofiandj,


bji=−bij,j=i,

bij−1=−a


ji

,

a


ij
−1=−bji. (6.9.8)

Whenj=i,a

ij
=aij, etc.


Notes on bordered determinants are given in Section 3.7. LetPdenote

the determinant of order (n+ 2) obtained by borderingAby two rows and

Free download pdf