282 6. Applications of Determinants in Mathematical Physics
6.9.2 Three Determinants..................
The determinantAand its cofactors are closely related to the Matsuno
determinantEand its cofactor (Section 5.4)
A=KnE,2 crArs=KnErs,4 crcsArs,rs=KnErs,rs,where
Kn=2nn
∏r=1cr. (6.9.4)The proofs are elementary. It has been proved that
n
∑r=1Err=n
∑r=1n
∑s=1Ers,n
∑r=1n
∑s=1Ers,rs=− 2n
∑r=1n
∑s− 1†
csErs.It follows that
n
∑r=1crArr=n
∑r=1n
∑s=1crArs (6.9.5)n
∑r=1n
∑s=1crcsArs,rs=−n
∑r=1n
∑s=1†
crcsArs. (6.9.6)Define the determinantBas follows:
B=|bij|n,where
bij=
aij− 1
ci+cj
ci−cj,j=iωθi,j=i (ω2
=−1).(6.9.7)
It may be verified that, for all values ofiandj,
bji=−bij,j=i,bij−1=−a∗
ji,
a∗
ij
−1=−bji. (6.9.8)Whenj=i,a
∗
ij
=aij, etc.
Notes on bordered determinants are given in Section 3.7. LetPdenotethe determinant of order (n+ 2) obtained by borderingAby two rows and