282 6. Applications of Determinants in Mathematical Physics
6.9.2 Three Determinants..................
The determinantAand its cofactors are closely related to the Matsuno
determinantEand its cofactor (Section 5.4)
A=KnE,
2 crArs=KnErs,
4 crcsArs,rs=KnErs,rs,
where
Kn=2
n
n
∏
r=1
cr. (6.9.4)
The proofs are elementary. It has been proved that
n
∑
r=1
Err=
n
∑
r=1
n
∑
s=1
Ers,
n
∑
r=1
n
∑
s=1
Ers,rs=− 2
n
∑
r=1
n
∑
s− 1
†
csErs.
It follows that
n
∑
r=1
crArr=
n
∑
r=1
n
∑
s=1
crArs (6.9.5)
n
∑
r=1
n
∑
s=1
crcsArs,rs=−
n
∑
r=1
n
∑
s=1
†
crcsArs. (6.9.6)
Define the determinantBas follows:
B=|bij|n,
where
bij=
aij− 1
ci+cj
ci−cj
,j=i
ωθi,j=i (ω
2
=−1).
(6.9.7)
It may be verified that, for all values ofiandj,
bji=−bij,j=i,
bij−1=−a
∗
ji
,
a
∗
ij
−1=−bji. (6.9.8)
Whenj=i,a
∗
ij
=aij, etc.
Notes on bordered determinants are given in Section 3.7. LetPdenote
the determinant of order (n+ 2) obtained by borderingAby two rows and