284 6. Applications of Determinants in Mathematical Physics
=
∑
r
∑
s
crcsArs. (6.9.13)
The determinantsA,B,P, andQ, their cofactors, and their complex
conjugates are related as follows:
B=Qn+1,n+2;n+1,n+2, (6.9.14)
A=B+Qn+1,n+1, (6.9.15)
A
∗
=(−1)
n
(B−Qn+1,n+1), (6.9.16)
Pn+1,n+2=Qn+1,n+2, (6.9.17)
P
∗
n+1,n+2=(−1)
n+1
Qn+2,n+1, (6.9.18)
Pn+2,n+2=Qn+2,n+2+Q, (6.9.19)
P
∗
n+2,n+2=(−1)
n+1
(Qn+2,n+2−Q). (6.9.20)
The proof of (6.9.14) is obvious. Equation (6.9.15) can be proved as follows:
B+Qn+1,n+1=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1
1
···
[bij]n ···
···
1
− 1 − 1 ··· − 11
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1
. (6.9.21)
Note the element 1 in the bottom right-hand corner. The row operations
R
′
i=Ri−Rn+1,^1 ≤i≤n, (6.9.22)
yield
B+Qn+1,n+1=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
∣
∣
∣
0
0
···
[bij+1]n ···
···
0
− 1 − 1 ··· − 11
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
∣
∣
∣
n+1
. (6.9.23)
Equation (6.9.15) follows by applying (6.9.7) and expanding the determi-
nant by the single nonzero element in the last column. Equation (6.9.16) can
be proved in a similar manner. ExpressQn+1,n+1−Bas a bordered deter-
minant similar to (6.9.21) but with the element 1 in the bottom right-hand
corner replaced by−1. The row operations
R
′
i=Ri+Rn+1,^1 ≤i≤n, (6.9.24)
leave a single nonzero element in the last column. The result appears after
applying the second line of (6.9.8).