286 6. Applications of Determinants in Mathematical Physics
Hence, the first term ofF is given by
AxA∗
x=(−1)n+1
Qn+1,n+2Qn+2,n+1. (6.9.28)Differentiating (6.9.26) and referring to (6.9.6),
Axx=ω∑
rcr∂Arr∂x=ω∑
rcr∑
s∂Ass∂θs∂θs∂x=−
∑
r∑
scrcsArs,rs=
∑
r∑
s†
crcsArs, (6.9.29)At=∑
r∂A
∂θr∂θr∂t=−ω∑
rc2
r
Arr. (6.9.30)Hence, applying (6.9.13) and (6.9.19),
Axx+ωAt=∑
r∑
s†
crcsArs+∑
rc2
rArr=
∑
r∑
scrcsArs=Pn+2,n+2=Qn+2,n+2+Q. (6.9.31)Hence, the second term ofFis given by
A
∗
(Axx+ωAt)=(−1)n
(B−Qn+1,n+1)(Qn+2,n+2+Q). (6.9.32)Taking the complex conjugate of (6.9.31) and applying (6.9.20) and
(6.9.15),
(Axx+ωAt)∗
=P∗
n+2,n+2=(−1)
n+1
(Qn+2,n+2−Q). (6.9.33)Hence, the third term ofFis given by
A(Axx+ωAt)∗
=(−1)n+1
(B+Qn+1,n+1)(Qn+2,n+2−Q). (6.9.34)Referring to (6.9.14),
1
2(−1)
n[
A
∗
(Axx+ωAt)+A(Axx+ωAt)∗]
=BQ−Qn+1,n+1Qn+2,n+2=QQn+1,n+2;n+1,n+2−Qn+1,n+1Qn+2,n+2.