6.10 The Einstein and Ernst Equations 287Hence, referring to (6.9.28) and applying the Jacobi identity,
(−1)
n
F=∣
∣
∣
∣
Qn+1,n+1 Qn+1,n+2Qn+2,n+1 Qn+2,n+2∣
∣
∣
∣
−QQn+1,n+2;n+1,n+2=0,
which completes the proof of the theorem.
6.10 The Einstein and Ernst Equations..............
6.10.1 Introduction
This section is devoted to the solution of the scalar Einstein equations,
namely
φ(
φρρ+1
ρφρ+φzz)
−φ2
ρ−φ2
z+ψ2
ρ+ψ2
z=0, (6.10.1)φ(
ψρρ+1
ρψρ+ψzz)
−2(φρψρ+φzψz)=0, (6.10.2)but before the theorems can be stated and proved, it is necessary to define
a functionur, three determinantsA,B, andE, and to prove some lemmas.
The notationω
2
=−1 is used again asiandjare indispensable as row
and column parameters, respectively.
6.10.2 Preparatory Lemmas
Let the functionur(ρ, z) be defined as any real solution of the coupled
equations
∂ur+1∂ρ+
∂ur∂z=−
rur+1ρ,r=0, 1 , 2 ,..., (6.10.3)∂ur− 1∂ρ−
∂ur∂z=
rur− 1ρ,r=1, 2 , 3 ..., (6.10.4)which are solved in Appendix A.11.
Define three determinantsAn,Bn, andEnas follows.An=|ars|nwhere
ars=ω|r−s|
u|r−s|, (ω2
=−1). (6.10.5)Bn=|brs|n,where
brs={
ur−s,r≥s(−1)s−r
us−r,r≤s