Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

288 6. Applications of Determinants in Mathematical Physics


brs=ω

s−r
ars. (6.10.6)

En=|ers|n=(−1)

n
A

(n+1)
1 ,n+1

=(−1)

n
A

(n+1)
n+1, 1

. (6.10.7)

In some detail,


An=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

u 0 ωu 1 −u 2 −ωu 3 ···

ωu 1 u 0 ωu 1 −u 2 ···

−u 2 ωu 1 u 0 ωu 1 ···

−ωu 3 −u 2 ωu 1 u 0 ···

..............................

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n


2
=−1), (6.10.8)

Bn=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

u 0 −u 1 u 2 −u 3 ···

u 1 u 0 −u 1 u 2 ···

u 2 u 1 u 0 −u 1 ···

u 3 u 2 u 1 u 0 ···

..........................

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

, (6.10.9)

En=

∣ ∣ ∣ ∣ ∣ ∣ ∣



ωu 1 u 0 ωu 1 −u 2 ···

−u 2 ωu 1 u 0 ωu 1 ···

−ωu 3 −u 2 ωu 1 u 0 ···

u 4 −ωu 3 −u 2 ωu 1 ···

..............................

∣ ∣ ∣ ∣ ∣ ∣ ∣



n


2
=−1),(6.10.10)

An=(−1)

n
E

(n+1)
n+1, 1

. (6.10.11)

Anis a symmetric Toeplitz determinant (Section 4.5.2) in whichtr=

ω


r
ur. All the elements on and below the principal diagonal of Bn are

positive. Those above the principal diagonal are alternately positive and


negative.


The notation is simplified by omitting the ordernfrom a determinant

or cofactor where there is no risk of confusion. ThusAn,A


(n)
ij

,A

ij
n
, etc.,

may appear asA,Aij,A
ij
, etc. Where the order is not equal ton, the


appropriate order is shown explicitly.


A and E, and their simple and scaled cofactors are related by the

following identities:


A 11 =Ann=An− 1 ,

A 1 n=An 1 =(−1)

n− 1
En− 1 ,

Ep 1 =(−1)

n− 1
Apn,

Enq=(−1)

n− 1
A 1 q,

En 1 =(−1)

n− 1
An− 1 , (6.10.12)
(
A

E

) 2

=

(

E

n 1

A

11

) 2

, (6.10.13)

E

2
E

p 1
E

nq
=A

2
A

pn
A

1 q

. (6.10.14)


Lemma 6.17.


A=B.
Free download pdf