288 6. Applications of Determinants in Mathematical Physics
brs=ωs−r
ars. (6.10.6)En=|ers|n=(−1)n
A(n+1)
1 ,n+1=(−1)
n
A(n+1)
n+1, 1. (6.10.7)
In some detail,
An=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
u 0 ωu 1 −u 2 −ωu 3 ···ωu 1 u 0 ωu 1 −u 2 ···−u 2 ωu 1 u 0 ωu 1 ···−ωu 3 −u 2 ωu 1 u 0 ···..............................∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n(ω2
=−1), (6.10.8)Bn=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
u 0 −u 1 u 2 −u 3 ···u 1 u 0 −u 1 u 2 ···u 2 u 1 u 0 −u 1 ···u 3 u 2 u 1 u 0 ···..........................∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n, (6.10.9)
En=∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
ωu 1 u 0 ωu 1 −u 2 ···−u 2 ωu 1 u 0 ωu 1 ···−ωu 3 −u 2 ωu 1 u 0 ···u 4 −ωu 3 −u 2 ωu 1 ···..............................∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
n(ω2
=−1),(6.10.10)An=(−1)n
E(n+1)
n+1, 1. (6.10.11)
Anis a symmetric Toeplitz determinant (Section 4.5.2) in whichtr=ω
r
ur. All the elements on and below the principal diagonal of Bn arepositive. Those above the principal diagonal are alternately positive and
negative.
The notation is simplified by omitting the ordernfrom a determinantor cofactor where there is no risk of confusion. ThusAn,A
(n)
ij,A
ij
n
, etc.,may appear asA,Aij,A
ij
, etc. Where the order is not equal ton, the
appropriate order is shown explicitly.
A and E, and their simple and scaled cofactors are related by thefollowing identities:
A 11 =Ann=An− 1 ,A 1 n=An 1 =(−1)n− 1
En− 1 ,Ep 1 =(−1)n− 1
Apn,Enq=(−1)n− 1
A 1 q,En 1 =(−1)n− 1
An− 1 , (6.10.12)
(
AE
) 2
=
(
E
n 1A
11) 2
, (6.10.13)
E
2
Ep 1
Enq
=A2
Apn
A1 q. (6.10.14)
Lemma 6.17.