6.10 The Einstein and Ernst Equations 295
Exercise.The one-variable Hirota operatorsHxandHxxare defined in
Section 5.7 and the determinantsAnandEn, each of which is a function of
ρandz, are defined in (6.10.8) and (6.10.10). Apply Lemma 6.20 to prove
that
Hρ(An− 1 ,En)−ωHz(An,En− 1 )=
(
n− 1
ρ
)
An− 1 En,
Hρ(An,En− 1 )−ωHz(An− 1 ,En)=−
(
n− 2
ρ
)
AnEn− 1 (ω
2
=−1).
Using the notation
K
2
(f, g)=
(
Hρρ+
1
ρ
Hρ+Hzz
)
(f, g),
wheref=f(ρ, z) andg=g(ρ, z), prove also that
K
2
(En,An)=
n(n−2)
ρ
2
EnAn,
{
K
2
+
2 n− 4
ρ
}
(An,An− 1 )=−
1
ρ
2
AnAn− 1 ,
K
2
{
ρ
n(n−2)/ 2
En,ρ
n(n−2)/ 2
An
}
=0,
K
2
{
ρ
(n
2
− 4 n+2)/ 2
An− 1 ,ρ
n(n−2)/ 2
An
}
=0,
K
2
{
ρ
(n
2
−2)/ 2
An+1,ρ
n(n−2)/ 2
An
}
=0.
(Sasa and Satsuma)
6.10.4 Preparatory Theorems
Define a Vandermondian (Section 4.1.2)V 2 n(x) as follows:
V 2 n(x)=
∣
∣
x
j− 1
i
∣
∣
2 n
=V(x 1 ,x 2 ,...,x 2 n), (6.10.24)
and let the (unsigned) minors ofV 2 n(c) be denoted byM
(2n)
ij
(c). Also, let
Mi(c)=M
(2n)
i, 2 n
(c)=V(c 1 ,c 2 ,...,ci− 1 ,ci+1,...,c 2 n),
M 2 n(c)=M
(2n)
2 n, 2 n(c)=V^2 n−^1 (c). (6.10.25)
xj=
z+cj
ρ
,
εj=e
ωθj
√
1+x
2
j
(ω
2
=−1)
=
τj
ρ