296 6. Applications of Determinants in Mathematical Physics
whereτj is a function which appears in the Neugebauer solution and is
defined in (6.2.20).
wr=2 n
∑j=1(−1)
j− 1
Mj(c)xr
jε∗
j. (6.10.27)
Then,
xi−xj=ci−cjρ, independent ofz,εjε∗
j=1+x2
j. (6.10.28)Now, letH
(m)
2 n
(ε) denote the determinant of order 2nwhose column vectorsare defined as follows:
C
(m)
j
(ε)=[
εj cjεj c2
jεj···cm− 1
j εj^1 cj c2
j···c2 n−m− 1
j]T
2 n,
1 ≤j≤ 2 n. (6.10.29)Hence,
C
(m)
j(
1
ε)
=
[
1
εjcjεjc
2
jεj···
cm− 1
jεj1 cj c2
j
···c2 n−m− 1
j]T
2 n(6.10.30)
=
1
εj[
1 cj c2
j···cm− 1
j εj cjεj c2
jεj···c2 n−m− 1
j εj]T
2 n.
But,
C
(2n−m)
j (ε)=[
εj cjεj c2
jεj···c2 n−m− 1
j εj^1 cjc2
j···cm− 1
j]T
2 n. (6.10.31)
The elements in the last column vector are a cyclic permutation of the
elements in the previous column vector. Hence, applying Property (c(i))
in Section 2.3.1 on the cyclic permutation of columns (or rows, as in this
case),
H
(m)
2 n(
1
ε)
=(−1)
m(2n−1)
2 n
∏j=1εj
− 1H
(2n−m)
2 n
(ε),H
(n+1)
2 n(
1 /ε)
H
(n)
2 n(
1 /ε) =−
H
(n−1)
2 n
(ε)H
(n)
2 n
(ε). (6.10.32)
Theorem.
a.|wi+j− 2 +wi+j|m=(−ρ2
)−m(m−1)/ 2
{V 2 n(c)}m− 1
H(m)
2 n
(ε),b.|wi+j− 2 |m=(−ρ
2
)−m(m−1)/ 2
{V 2 n(c)}m− 1
H(m)
2 n(
1
ε
∗)
.
The determinants on the left are Hankelians.