296 6. Applications of Determinants in Mathematical Physics
whereτj is a function which appears in the Neugebauer solution and is
defined in (6.2.20).
wr=
2 n
∑
j=1
(−1)
j− 1
Mj(c)x
r
j
ε
∗
j
. (6.10.27)
Then,
xi−xj=
ci−cj
ρ
, independent ofz,
εjε
∗
j=1+x
2
j. (6.10.28)
Now, letH
(m)
2 n
(ε) denote the determinant of order 2nwhose column vectors
are defined as follows:
C
(m)
j
(ε)=
[
εj cjεj c
2
jεj···c
m− 1
j εj^1 cj c
2
j···c
2 n−m− 1
j
]T
2 n
,
1 ≤j≤ 2 n. (6.10.29)
Hence,
C
(m)
j
(
1
ε
)
=
[
1
εj
cj
εj
c
2
j
εj
···
c
m− 1
j
εj
1 cj c
2
j
···c
2 n−m− 1
j
]T
2 n
(6.10.30)
=
1
εj
[
1 cj c
2
j···c
m− 1
j εj cjεj c
2
jεj···c
2 n−m− 1
j εj
]T
2 n
.
But,
C
(2n−m)
j (ε)=
[
εj cjεj c
2
jεj···c
2 n−m− 1
j εj^1 cjc
2
j···c
m− 1
j
]T
2 n
. (6.10.31)
The elements in the last column vector are a cyclic permutation of the
elements in the previous column vector. Hence, applying Property (c(i))
in Section 2.3.1 on the cyclic permutation of columns (or rows, as in this
case),
H
(m)
2 n
(
1
ε
)
=(−1)
m(2n−1)
2 n
∏
j=1
εj
− 1
H
(2n−m)
2 n
(ε),
H
(n+1)
2 n
(
1 /ε
)
H
(n)
2 n
(
1 /ε
) =−
H
(n−1)
2 n
(ε)
H
(n)
2 n
(ε)
. (6.10.32)
Theorem.
a.|wi+j− 2 +wi+j|m=(−ρ
2
)
−m(m−1)/ 2
{V 2 n(c)}
m− 1
H
(m)
2 n
(ε),
b.|wi+j− 2 |m=(−ρ
2
)
−m(m−1)/ 2
{V 2 n(c)}
m− 1
H
(m)
2 n
(
1
ε
∗
)
.
The determinants on the left are Hankelians.