306 Appendix
Other applications are found in Appendix A.4 on Appell polynomials.Γ(x)=∫∞
0e−t
tx− 1
dt,Γ(x+1)=xΓ(x)Γ(n+1)=n!,n=1, 2 , 3 ,....The Legendre duplication formula is
√
πΓ(2x)=22 x− 1
Γ(x)Γ(
x+
1
2)
,
which is applied in Appendix A.8 on differences.
Stirling Numbers
The Stirling numbers of the first and second kinds, denoted bysijandSij,
respectively, are defined by the relations
(x)r=r
∑k=0srkxk
,sr 0 =δr 0 ,xr
=r
∑k=0Srk(x)k,Sr 0 =δr 0 ,where (x)ris the falling factorial function defined as
(x)r=x(x−1)(x−2)···(x−r+1),r=1, 2 , 3 ,....Stirling numbers satisfy the recurrence relations
sij=si− 1 ,j− 1 −(i−1)si− 1 ,jSij=Si− 1 ,j− 1 +jSi− 1 ,j.Some values of these numbers are given in the following short tables:
sijji 123451 12 − 113 2 − 314 − 611 − 615 24 − 50 35 −10 1