A.1 Miscellaneous Functions 305δi,odd={
1 ,iodd,0 ,ieven.δi 1 i 2 ;j 1 j 2 ={
1 , (j 1 ,j 2 )=(i 1 ,i 2 )0 , otherwise.The Binomial Coefficient and Gamma Function
(
nr)
=
{
n!
r!(n−r)!
, 0 ≤r≤n0 , otherwise.
(
nn−r)
=
(
nr)
,
(
nr)
=
(
n− 1r)
+
(
n− 1r− 1)
.
The lower or upper limitr=i(→j) in a sum denotes that the limitwas originallyi, butican be replaced byjwithout affecting the sum since
the additional or rejected terms are all zero. For example,
∞
∑r=0(→n)ar(r−n)!denotes that∞
∑r=0ar(r−n)!can be replaced by∞
∑r=nar(r−n)!;
n(→∞)
∑r=0(
nr)
ardenotes thatn
∑r=0(
nr)
arcan be replaced by∞
∑r=0(
nr)
ar.This notation has applications in simplifying multiple sums by changing
the order of summation. For example,
q
∑n=0n
∑p=0(
np)
ap=q
∑p=0(
q+1p+1)
ap.Proof. Denote the sum on the left bySqand apply the well-known
identity
q
∑n=p(
np)
=
(
q+1p+1)
Sq=q
∑n=0n(→∞)
∑p=0(
np)
ap=∞
∑p=0apq
∑n=0(→p)(
np)
=
∞(→q)
∑p=0ap(
q+1p+1)
.
The result follows.