A.4 Appell Polynomials 319These polynomials can be displayed in matrix form as follows:
LetU(x)=
u 00 u 01 u 02 ···u 10 u 11 u 12 ···u 20 u 21 u 22 ······ ··· ··· ···
.
Then,
U(x)=exQ
U(0)(
exQ)T
.
Hence,
U(0) =e−xQ
U(x)(
e−xQ)T
,
that is,
αij=i
∑r=0j
∑s=0(
ir)(
js)
urs(−x)i+j−r−s
,i,j=0, 1 , 2 ,....Other solutions of (A.4.12) can be expressed in terms of simple Appell
polynomials; for example,
uij=φiφj,uij=∣
∣
∣
∣
φi φjφi+1 φj+1∣
∣
∣
∣
.
Solutions of the three-parameter Appell equation, namely
u′
ijk=iui−^1 ,j,k+jui,j−^1 ,k+kuij,k−^1 ,include
uijk=φiφjφk,uijk=∣ ∣ ∣ ∣ ∣ ∣
φi φj φkφi+1 φj+1 φk+1φi+2 φj+2 φk+2∣ ∣ ∣ ∣ ∣ ∣
.
Carlson has studied polynomialsφm(x,y,z,...) which satisfy the relation
(Dx+Dy+Dz+···)φm=mφm− 1 ,Dx=∂
∂x,etc.,and Carlitz has studied polynomialsφmnp...(x,y,z,...) which satisfy the
relations
Dx(φmnp...)=mφm− 1 ,np...,Dy(φmnp...)=nφm,n− 1 ,p...,Dz(φmnp...)=pφmn,p− 1 ,....