320 Appendix
The polynomial
ψmn(x)=m
∑r=0(
mr)
αn+rxrsatisfies the relations
ψ′
mn=mψm−^1 ,n+1,ψmn−ψm− 1 ,n=xψ′
mn=mxψm− 1 ,n+1.Exercises
1.Prove thatφm(x−h)=m
∑r=0(
mr)
(−h)r
φm−r(x)=∆
m
hφ^0.2.IfSm(x)=∑
r+s=mφrφs,Tm(x)=∑
r+s+t=mφrφsφt,prove thatS
′
m
=(m+1)Sm− 1 ,Sm(x+h)=m
∑r=0(
m+1r)
hr
Sm−r(x),T
′
m=(m+2)Tm−^1 ,Tm(x+h)=m
∑r=0(
m+2r)
hr
Tm−r(x).3.Prove thatφ− 1
m =1
αm∞
∑n=0(−1)
n
cmnxn
,wherecm 0 =1,cmn=1
α
n
m∣
∣
∣
∣
(
mm−i+j− 1)
αm−i+j− 1∣
∣
∣
∣
n,n≥ 1.This determinant is of Hessenberg form, is symmetric about its sec-ondary diagonal, and contains no more than (m+ 1) nonzero diagonalsparallel to and including the principal diagonal.