326 Appendix
∂V
∂u=V(V+1−x)from which it follows thatSmsatisfies the nonlinear recurrence relation
Sm+1=(1−x)Sm+m
∑r=0(
mr)
SrSm−r.It then follows that
∆ψm=ψm+1−ψm=m
∑r=0(
mr)
ψrψm−r.A.7 Symmetric Polynomials
Let the functionfn(x) and the polynomialsσ
(n)
p in thenvariablesxi,1 ≤i≤n, be defined as follows:
fn(x)=n
∏i=1(x−xi)=n
∑p=0(−1)
p
σ(n)
p
xn−p. (A.7.1)
Examples
σ(n)
0=1,
σ(n)
1 =n
∑r=1xr,σ(n)
2 =∑
1 ≤r<s≤nxrxs,σ(n)
3=
∑
1 ≤r<s<t≤nxrxsxt,... ............
σ(n)
n =x^1 x^2 x^3 ...xn.These polynomials are known as symmetric polynomials.
Let the functiongnr(x) and the polynomialsσ(n)
rs in the (n−1) variablesxi,1≤i≤n,i=r, be defined as follows:
gnr(x)=fn(x)x−xr=
n− 1
∑s=0(−1)
s
σ(n)
rs
xn− 1 −s
, (A.7.2)gnn(x)=fn− 1 (x) (A.7.3)for all values ofx. Hence,
σ(n)
ns
=σ(n−1)
s