362 Bibliography
1880–1900, Macmillan, New York, 1923; Vol. V,1900–1920, Blackie, London,
1930.
T. Muir (revised and enlarged by W.H. Metzler),A Treatise on the Theory of
Determinants, Dover, New York, 1960. [See Appendix 13 in this book.]
T. Muir, The theory of persymmetric determinants from 1894–1919.Proc. Roy.
Soc. Edin. 47 (1926–1927), 11–33.
B. Murphy, Expansion of (n−1)-rowed sub-determinants.Math. Z. 147 (1976),
205–206. [MR 53 (1977), 2980.]
I.S. Murphy, A note on the product of complementary principal minors of a
positive definite matrix.Linear Alg. Applic. 44 (1982), 169–172. [MR 83g:
15016.]
D. Mustard, Numerical integration over then-dimensional spherical shell.Math.
Comput. 18 (1964), 578–589. [MR 30 (1965), 712.]
A. Nagai, J. Satsuma, The Lotke–Volterra equations and the QR algorithm.J.
Phys. Soc. Japan 64 (1995), 3669–3674. [MR 96h: 92014.]
K. Nagatomo, Explicit description of ansatzEnfor the Ernst equation in general
relativity.J. Math. Phys. 30 (1989), 1100–1102. [PA 92 (1989), 97900.]
K. Nakamori, The theory ofp-dimensional determinants.Yokahama Math. J. 6
(1958), 79–88. [MR 21 (1960), 678.]
A. Nakamura, A bilinearN-soliton formula for the KP equation.J. Phys. Soc.
Japan 58 (1989), 412–422. [PA 92 (1989), 68150; MR 90i: 35257.]
A. Nakamura, Jacobi structures of the n-soliton solutions of the nonlin-
ear Schroedinger, the Heisenberg spin and the cylindrical Heisenberg spin
equations.J. Phys. Soc. Japan 58 (1989), 4334–4343. [MR 91b: 82015.]
A. Nakamura, The 3 + 1 dimensional Toda molecule equation and its multiple
soliton solutions.J. Phys. Soc. Japan 58 (1989), 2687–2693. [PA 92 (1989),
139233; MR 90i: 35258.]
A. Nakamura, Cylindrical multi-soliton solutions of the Toda molecule equation
and their large molecule limit of the Toda lattice.J. Phys. Soc. Japan 59
(1990), 1553–1559. [PA 93 (1990), 93011.]
A. Nakamura, General cylindrical soliton solutions of the Toda molecule.J. Phys.
Soc. Japan 59 (1990), 3101–3111. [MR 91h: 35277.]
A. Nakamura, Bilinear structures of the real 2N-soliton solutions of the Ernst
equation.J. Phys. Soc. Japan 63 (1994), 1214–1215.
A. Nakamura, ExplicitN-soliton solutions of the 1+1 dimensional Toda molecule
equation.J. Phys. Soc. Japan 67 (1998), 791–798.
Y. Nakamura, Symmetries of stationary axially symmetric vacuum Einstein equa-
tions and the new family of exact solutions.J. Math. Phys. 24 (1983), 606–609.
[PA 86 (1983), 49226.]
Y. Nakamura, On a linearisation of the stationary axially symmetric Einstein
equations.Class. Quantum Grav. 4 (1987), 437–440. [PA 90 (1987), 67098;
MR 88c: 83027.]
R. Narayan, R. Nityananda, The maximum determinant method and the
maximum entropy method.Acta Cryst. A 38 (1982), 122–128. [MR 83m:
82050.]