Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

362 Bibliography


1880–1900, Macmillan, New York, 1923; Vol. V,1900–1920, Blackie, London,

1930.

T. Muir (revised and enlarged by W.H. Metzler),A Treatise on the Theory of


Determinants, Dover, New York, 1960. [See Appendix 13 in this book.]

T. Muir, The theory of persymmetric determinants from 1894–1919.Proc. Roy.


Soc. Edin. 47 (1926–1927), 11–33.

B. Murphy, Expansion of (n−1)-rowed sub-determinants.Math. Z. 147 (1976),


205–206. [MR 53 (1977), 2980.]

I.S. Murphy, A note on the product of complementary principal minors of a


positive definite matrix.Linear Alg. Applic. 44 (1982), 169–172. [MR 83g:

15016.]

D. Mustard, Numerical integration over then-dimensional spherical shell.Math.


Comput. 18 (1964), 578–589. [MR 30 (1965), 712.]

A. Nagai, J. Satsuma, The Lotke–Volterra equations and the QR algorithm.J.


Phys. Soc. Japan 64 (1995), 3669–3674. [MR 96h: 92014.]

K. Nagatomo, Explicit description of ansatzEnfor the Ernst equation in general


relativity.J. Math. Phys. 30 (1989), 1100–1102. [PA 92 (1989), 97900.]

K. Nakamori, The theory ofp-dimensional determinants.Yokahama Math. J. 6


(1958), 79–88. [MR 21 (1960), 678.]

A. Nakamura, A bilinearN-soliton formula for the KP equation.J. Phys. Soc.


Japan 58 (1989), 412–422. [PA 92 (1989), 68150; MR 90i: 35257.]

A. Nakamura, Jacobi structures of the n-soliton solutions of the nonlin-


ear Schroedinger, the Heisenberg spin and the cylindrical Heisenberg spin

equations.J. Phys. Soc. Japan 58 (1989), 4334–4343. [MR 91b: 82015.]

A. Nakamura, The 3 + 1 dimensional Toda molecule equation and its multiple


soliton solutions.J. Phys. Soc. Japan 58 (1989), 2687–2693. [PA 92 (1989),

139233; MR 90i: 35258.]

A. Nakamura, Cylindrical multi-soliton solutions of the Toda molecule equation


and their large molecule limit of the Toda lattice.J. Phys. Soc. Japan 59

(1990), 1553–1559. [PA 93 (1990), 93011.]

A. Nakamura, General cylindrical soliton solutions of the Toda molecule.J. Phys.


Soc. Japan 59 (1990), 3101–3111. [MR 91h: 35277.]

A. Nakamura, Bilinear structures of the real 2N-soliton solutions of the Ernst


equation.J. Phys. Soc. Japan 63 (1994), 1214–1215.

A. Nakamura, ExplicitN-soliton solutions of the 1+1 dimensional Toda molecule


equation.J. Phys. Soc. Japan 67 (1998), 791–798.

Y. Nakamura, Symmetries of stationary axially symmetric vacuum Einstein equa-


tions and the new family of exact solutions.J. Math. Phys. 24 (1983), 606–609.

[PA 86 (1983), 49226.]

Y. Nakamura, On a linearisation of the stationary axially symmetric Einstein


equations.Class. Quantum Grav. 4 (1987), 437–440. [PA 90 (1987), 67098;

MR 88c: 83027.]

R. Narayan, R. Nityananda, The maximum determinant method and the


maximum entropy method.Acta Cryst. A 38 (1982), 122–128. [MR 83m:

82050.]
Free download pdf