Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
Bibliography 363

K. Narita, New nonlinear difference–differential equation related to the Volterra


equation.J. Math. Anal. Applic. 186 (1994), 120–131.

B. Nelson, B. Sheeks, Fredholm determinants associated with Wiener integrals.


J. Math. Phys. 22 (1981), 2132–2136. [Zbl 473 (1983), 28005.]

G. Neugebauer, A general integral of the axially symmetric stationary Einstein


equations.J. Phys. A. Math. Gen. 13 (1980), L19–21. [PA 83 (1980), 31622.]

M. Newman, Determinants of circulants of prime power order.Linear Multilinear


Alg. 9 (1980), 187–191. [MR 82c: 15020.]

M. Newman, A result about determinantal divisors.Linear Multilinear Alg. 11


(1982), 363–366. [MR 83h: 15012.]

J.D. Niblett, A theorem of Nesbitt.Am. Math. Monthly 59 (1952), 171–174.


J.J.C. Nimmo, Soliton solutions of three differential–difference equations in


Wronskian form.Phys. Lett. A 99 (1983), 281–286. [PA 87 (1984), 22595.]

J.J.C. Nimmo, Wronskian determinants, the KP hierarchy and supersymmetric


polynomials.J. Phys. A: Math. Gen. 22 (1989), 3213–3221. [PA 92 (1989),

132225.]

J.J.C. Nimmo, Hall–Littlewood symmetric functions and the BKP equation.J.


Phys. A 23 (1990), 751–760. [MR 91g: 05136.]

J.J.C. Nimmo, A class of solutions of the Konopelchenko–Rogers equations.Phys.


Lett. A 168 (1992), 113–119. [MR 93f: 35206].

J.J.C. Nimmo, N.C. Freeman, A method of obtaining theN-soliton solution of


the Boussinesq equation in terms of a Wronskian.Phys. Lett.95A(1983),

4–6. [PA 86 (1983), 64699.]

J.J.C. Nimmo, N.C. Freeman, Rational solutions of the KdV equation in


Wronskian form.Phys. Lett.96A(1983), 443–446. [PA 86 (1983), 98781.]

J.J.C. Nimmo, N.C. Freeman, The use of B ̈acklund transformations in obtaining


N-soliton solutions in Wronskian form.J. Phys. A 17 (1984), 1415–1424. [PA

87 (1984), 68001.]

J.W. Noonan, D.K. Thomas, On the Hankel determinants of areally meanp-


valent functions.Proc. Lond. Math. Soc. 25 (1972), 503–524. [MR 46 (1973),

5605.]

K.I. Noor, Hankel determinant problem for the class of functions with bounded


boundary rotation.Rev. Roumaine Math. Pures Appl. 28 (1983), 731–739.

[MR 85f: 30017.]

W. Oevel, W. Strampp, Wronskian solutions of the constrained KP hierarchy.J.


Math. Phys. 37 (1996), 6213–6219.

S. Ogawa, S. Arioka, S. Kida, On linear independency of vector-valued


mappings—an extension of Wronskian.Math. Jap. 31 (1986), 85–93. [Zbl

589 (1986), 15001; MR 87g: 15003.]

Y. Ohta, Pfaffian solutions for the Veselev–Novikov equation.J. Phys. Soc. Japan


61 (1992), 3928–3933. [PA 96 (1993), 19413.]

Y. Ohta, R. Hirota, A discrete KdV equation and its Casorati determinant


solution.J. Phys. Soc. Japan 60 (1991), 2095. [PA 94 (1991), 113667.]
Free download pdf