Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

42 3. Intermediate Determinant Theory


=−


r


s

δrpδsqA

is
A

rj

=−A

iq
A

pj

=−

1

A

2

[AiqApj]. (3.6.7)

Hence,






Aij Aiq

Apj Apq





=AAip,jq, (3.6.8)

which, when the parameternis restored, is equivalent to (3.6.4). The


formula given in the theorem follows by scaling the cofactors. 


Theorem 3.5.


∣ ∣ ∣ ∣ ∣ ∣
A

ij
A

iq
A

iv

A

pj
A

pq
A

pv

A

uj
A

uq
A

uv

∣ ∣ ∣ ∣ ∣ ∣

=A

ipu,jqv
,

where the cofactors are scaled.


Proof. From (3.2.4) and Theorem 3.4,



2
A

∂apq∂auv

=Apu,qv

=AA

pu,qv

=A





A

pq
A
pv

A

uq
A
uv





. (3.6.9)

Hence, referring to (3.6.7) and the formula for the derivative of a


determinant (Section 2.3.7),



3
A

∂aij∂apq∂auv

=

∂A

∂aij





A

pq
A

pv

A

uq
A

uv





+A






∂A
pq

∂aij

A

pv

∂A
uq

∂aij

A

uv






+A






A

pq ∂A
pv

∂aij

A

uq ∂A
uv

∂aij






= Aij





A

pq
A

pv

A

uq
A

uv





−AA

iq





A

pj
A

pv

A

uj
A

uv





−AA

iv





A

pq
A

pj

A

uq
A

uj





=

1

A

2

[

Aij





Apq Apv

Auq Auv





−Aiq





Apj Apv

Auj Auv





+Aiv





Apj Apq

Auj Auq





]

=

1

A

2

∣ ∣ ∣ ∣ ∣ ∣

Aij Aiq Aiv

Apj Apq Apv

Auj Auq Auv

∣ ∣ ∣ ∣ ∣ ∣

. (3.6.10)
Free download pdf