3.6 The Jacobi Identity and Variants 41=
∣ ∣ ∣ ∣ ∣ ∣ ∣
Aa 21 a 23Aa 31 a 33a 11 a 13a 41 a 43∣ ∣ ∣ ∣ ∣ ∣ ∣
=A
2∣
∣
∣
∣
a 11 a 13a 41 a 43∣
∣
∣
∣
=A
2
M 23 , 24=σA2
A 23 , 24.Hence, transposingJ,
J=
∣
∣
∣
∣
A 22 A 24
A 32 A 34
∣
∣
∣
∣
=AA 23 , 24
which completes the illustration.
Restoring the parametern, the Jacobi identity withr =2,3 can beexpressed as follows:
r=2:∣
∣
∣
∣
∣
A
(n)
ipA
(n)
iqA(n)
jpA
(n)
jq∣
∣
∣
∣
∣
=AnA(n)
ij,pq. (3.6.4)r=3:∣ ∣ ∣ ∣ ∣ ∣ ∣
A
(n)
ip A(n)
iq A(n)
irA
(n)
jpA
(n)
jqA
(n)
jrA
(n)
kpA
(n)
kqA
(n)
kr∣ ∣ ∣ ∣ ∣ ∣ ∣
=A
2
nA
(n)
ijk,pqr. (3.6.5)
3.6.2 The Jacobi Identity — 2
The Jacobi identity for small values ofrcan be proved neatly by a technique
involving partial derivatives with respect to the elements ofA. The general
result can then be proved by induction.
Theorem 3.4. For an arbitrary determinantAnof ordern,
∣
∣
∣
∣A
ij
nA
iq
n
A
pj
nA
pq
n∣
∣
∣
∣
=A
ip,jq
n,
where the cofactors are scaled.
Proof. The technique is to evaluate∂A
ij
/∂apqby two different methodsand to equate the results. From (3.2.15),
∂A
ij∂apq=
1
A
2[
AAip,jq−AijApq]
. (3.6.6)
Applying double-sum identity (B) in Section 3.4,
∂A
ij∂apq=−
∑
r∑
s∂ars∂apqA
is
Arj