4.2 Principle of Virtual Work 93force,S;abendingmoment,M;andatorque,T,producedbysomeexternalloadingsystemactingon
thestructureofwhichthememberispart.Thestressdistributionscorrespondingtotheseinternalforces
arerelatedtoanaxissystemwhoseorigincoincideswiththecentroidofareaofthecrosssection.We
shall,infact,beusingthesestressdistributionsinthederivationofexpressionsforinternalvirtualwork
inlinearlyelasticstructuressothatitislogicaltoassumethesameoriginofaxeshere;weshallalso
assumethattheyaxisisanaxisofsymmetry.Initially,weshallconsiderthenormalforce,N.
Thedirectstress,σ,atanypointinthecrosssectionofthememberisgivenbyσ=N/A.Therefore,
thenormalforceontheelementδAatthepoint(z,y)is
δN=σδA=N
A
δASupposenowthatthestructureisgivenanarbitraryvirtualdisplacementwhichproducesavirtualaxial
strain,εv, in the element. The internal virtual work,δwi,N, done by the axial force on the elemental
lengthofthememberisgivenby
δwi,N=∫
AN
A
dAεvδxwhich,since
∫
AdA=A,reducesto
δwi,N=Nεvδx (4.9)Inotherwords,thevirtualworkdonebyNistheproductofNandthevirtualaxialdisplacementof
theelementofthemember.ForamemberoflengthL,thevirtualwork,wi,N,doneduringthearbitrary
virtualstrainisthen
wi,N=∫
LNεvdx (4.10)Forastructurecomprisinganumberofmembers,thetotalinternalvirtualwork,Wi,N,donebyaxial
forceisthesumofthevirtualworkofeachofthemembers.Therefore,
wi,N=∑∫
LNεvdx (4.11)NotethatinthederivationofEq.(4.11),wehavemadenoassumptionregardingthematerialproperties
ofthestructuresothattherelationshipholdsfornonelasticaswellaselasticmaterials.However,fora
linearlyelasticmaterial—inotherwords,onethatobeysHooke’slaw—wecanexpressthevirtualstrain
intermsofanequivalentvirtualnormalforce:
εv=σv
E=
Nv
EATherefore,ifwedesignatetheactualnormalforceinamemberbyNA,Eq.(4.11)maybeexpressedin
theform
wi,N=∑∫
LNANv
EAdx (4.12)