4.2 Principle of Virtual Work 93
force,S;abendingmoment,M;andatorque,T,producedbysomeexternalloadingsystemactingon
thestructureofwhichthememberispart.Thestressdistributionscorrespondingtotheseinternalforces
arerelatedtoanaxissystemwhoseorigincoincideswiththecentroidofareaofthecrosssection.We
shall,infact,beusingthesestressdistributionsinthederivationofexpressionsforinternalvirtualwork
inlinearlyelasticstructuressothatitislogicaltoassumethesameoriginofaxeshere;weshallalso
assumethattheyaxisisanaxisofsymmetry.Initially,weshallconsiderthenormalforce,N.
Thedirectstress,σ,atanypointinthecrosssectionofthememberisgivenbyσ=N/A.Therefore,
thenormalforceontheelementδAatthepoint(z,y)is
δN=σδA=
N
A
δA
Supposenowthatthestructureisgivenanarbitraryvirtualdisplacementwhichproducesavirtualaxial
strain,εv, in the element. The internal virtual work,δwi,N, done by the axial force on the elemental
lengthofthememberisgivenby
δwi,N=
∫
A
N
A
dAεvδx
which,since
∫
AdA=A,reducesto
δwi,N=Nεvδx (4.9)
Inotherwords,thevirtualworkdonebyNistheproductofNandthevirtualaxialdisplacementof
theelementofthemember.ForamemberoflengthL,thevirtualwork,wi,N,doneduringthearbitrary
virtualstrainisthen
wi,N=
∫
L
Nεvdx (4.10)
Forastructurecomprisinganumberofmembers,thetotalinternalvirtualwork,Wi,N,donebyaxial
forceisthesumofthevirtualworkofeachofthemembers.Therefore,
wi,N=
∑∫
L
Nεvdx (4.11)
NotethatinthederivationofEq.(4.11),wehavemadenoassumptionregardingthematerialproperties
ofthestructuresothattherelationshipholdsfornonelasticaswellaselasticmaterials.However,fora
linearlyelasticmaterial—inotherwords,onethatobeysHooke’slaw—wecanexpressthevirtualstrain
intermsofanequivalentvirtualnormalforce:
εv=
σv
E
=
Nv
EA
Therefore,ifwedesignatetheactualnormalforceinamemberbyNA,Eq.(4.11)maybeexpressedin
theform
wi,N=
∑∫
L
NANv
EA
dx (4.12)