5.2 The Principle of the Stationary Value 113
Fig.5.2
Load–deflection curve for a linearly elastic member.
Hence,
dU
dy
=P
dU
dP
=
1
n
(
P
b
) 1 /n
=
1
n
y (5.3)
dC
dP
=y
dC
dy
=bnyn=nP (5.4)
Whenn=1,
dU
dy
=
dC
dy
=P
dU
dP
=
dC
dP
=y
⎫
⎪⎪
⎬
⎪⎪
⎭
(5.5)
andthestrainandcomplementaryenergiesarecompletelyinterchangeable.Suchaconditionisfoundin
alinearlyelasticmember;itsrelatedload–deflectioncurveisshowninFig.5.2.Clearly,areaOBD(U)
isequaltoareaOBA(C).
It will be observed that the latter of Eqs. (5.5) is in the form of what is commonly known as
Castigliano’sfirsttheorem,inwhichthedifferentialofthestrainenergyUofastructurewithrespectto
aloadisequatedtothedeflectionoftheload.Tobemathematicallycorrect,however,itisthedifferential
ofthecomplementaryenergyCwhichshouldbeequatedtodeflection(compareEqs.(5.3)and(5.4)).
5.2 ThePrincipleoftheStationaryValueoftheTotalComplementaryEnergy..................
ConsideranelasticsysteminequilibriumsupportingforcesP 1 ,P 2 ,...,Pnwhichproducerealcorre-
spondingdisplacements 1 , 2 ,..., (^) n.IfweimposevirtualforcesδP 1 ,δP 2 ,...,δPnonthesystem
actingthroughtherealdisplacements,thenthetotalvirtualworkdonebythesystem(seeChapter4)is
−
∫
vol
ydP+
∑n
r= 1
(^) rδPr