5.4Application to the Solution of Statically Indeterminate Systems 123
Fig.5.8
Analysis of a statically indeterminate framework by the method of complementary energy.
tensileforceRduetotheexternalloading.Thetotalcomplementaryenergyoftheframeworkis,with
thenotationofEq.(5.9),
C=
∑k
i= 1
∫Fi
0
λidFi−P
Hence,
∂C
∂R
=
∑k
i= 1
λi
∂Fi
∂R
= 0 (5.15)
or,assuminglinearelasticity,
1
AE
∑k
i= 1
FiLi
∂Fi
∂R
= 0 (5.16)
ThesolutionisnowcompletedinTable5.2,where,asinTable5.1,positivesignsindicatetension.
Hence,fromEq.(5.16),
4.83RL+2.707PL= 0
or
R=−0.56P
Substitution forRin column③of Table 5.2 gives the force in each member. Having determined the
forcesinthemembers,thenthedeflectionofanypointontheframeworkmaybefoundbythemethod
describedinSection5.3.
Unlikethestaticallydeterminatetype,staticallyindeterminateframeworksmaybesubjectedtoself-
straining.Thus,internalforcesarepresentbeforeexternalloadsareapplied.Suchasituationmaybe
causedbyalocaltemperaturechangeorbyaninitiallackoffitofamember.Supposethatthemember
BDoftheframeworkofFig.5.8isshortbyaknownamount (^) Rwhentheframeworkisassembledbut