132 CHAPTER 5 Energy Methods
butthedirectloadshaveavalueP/2.Thetotalcomplementaryenergyofthesystemis(againignoring
shearstrains)
C=
∫
ring
∫M
0
dθdM− 2
(
P
2
)
taking the bending moment as positive when it increases the curvature of the ring. In the preceding
expressionforC, isthedisplacementofthetop,A,oftheringrelativetothebottom,B.Assigninga
stationaryvaluetoC,wehave
∂C
∂MA
=
∫
ring
dθ
∂M
∂MA
= 0
orassuminglinearelasticityandconsidering,fromsymmetry,halfthering
∫πR
0
M
EI
∂M
∂MA
ds= 0
Thus,since
M=MA−
P
2
Rsinθ
∂M
∂MA
= 1
andwehave
∫π
0
(
MA−
P
2
Rsinθ
)
Rdθ= 0
or
[
MAθ+
P
2
Rcosθ
]π
0
= 0
fromwhich
MA=
PR
π
Thebendingmomentdistributionisthen
M=PR
(
1
π
−
sinθ
2
)
andisshowndiagrammaticallyinFig.5.15.
Letusnowconsideramorerepresentativeaircraftstructuralproblem.Thecircularfuselageframe
ofFig.5.16(a)supportsaloadPwhichisreactedbyashearflowq(i.e.,ashearforceperunitlength:
seeChapter15),distributedaroundthecircumferenceoftheframefromthefuselageskin.Thevalue
anddirectionofthisshearflowarequotedherebutarederivedfromtheoryestablishedinSection15.3.
From our previous remarks on the effect of symmetry, we observe that there is no shear force at the
sectionAontheverticalplaneofsymmetry.TheunknownsarethereforethebendingmomentMAand