132 CHAPTER 5 Energy Methods
butthedirectloadshaveavalueP/2.Thetotalcomplementaryenergyofthesystemis(againignoring
shearstrains)
C=
∫
ring∫M
0dθdM− 2(
P
2
)
taking the bending moment as positive when it increases the curvature of the ring. In the preceding
expressionforC, isthedisplacementofthetop,A,oftheringrelativetothebottom,B.Assigninga
stationaryvaluetoC,wehave
∂C
∂MA=
∫
ringdθ∂M
∂MA
= 0
orassuminglinearelasticityandconsidering,fromsymmetry,halfthering
∫πR0M
EI
∂M
∂MA
ds= 0Thus,since
M=MA−P
2
Rsinθ∂M
∂MA
= 1
andwehave
∫π0(
MA−
P
2
Rsinθ)
Rdθ= 0or
[
MAθ+
P
2
Rcosθ]π0= 0
fromwhich
MA=PR
πThebendingmomentdistributionisthen
M=PR(
1
π−
sinθ
2)
andisshowndiagrammaticallyinFig.5.15.
Letusnowconsideramorerepresentativeaircraftstructuralproblem.Thecircularfuselageframe
ofFig.5.16(a)supportsaloadPwhichisreactedbyashearflowq(i.e.,ashearforceperunitlength:
seeChapter15),distributedaroundthecircumferenceoftheframefromthefuselageskin.Thevalue
anddirectionofthisshearflowarequotedherebutarederivedfromtheoryestablishedinSection15.3.
From our previous remarks on the effect of symmetry, we observe that there is no shear force at the
sectionAontheverticalplaneofsymmetry.TheunknownsarethereforethebendingmomentMAand