5.4Application to the Solution of Statically Indeterminate Systems 133Fig.5.15
Distribution of bending moment in a doubly symmetric ring.
normalforceNA.Weproceed,asinthepreviousexample,bywritingdownthetotalcomplementary
energyCofthesystem.Then,neglectingshearstrains
C=
∫
ring∫M
0dθdM−P (i)inwhich isthedeflectionofthepointofapplicationofPrelativetothetopoftheframe.NotethatMA
andNAdonotcontributetothecomplementofthepotentialenergyofthesystem,since,bysymmetry,
therotationandhorizontaldisplacementsatAarezero.Fromtheprincipleofthestationaryvalueof
thetotalcomplementaryenergy,
∂C
∂MA=
∫
ringdθ∂M
∂MA
=0(ii)and
∂C
∂NA=
∫
ringdθ∂M
∂NA
=0(iii)Thebendingmomentataradialsectioninclinedatanangleθtotheverticaldiameteris,fromFig.5.16(c),
M=MA+NAR( 1 −cosθ)+∫θ0qBDRdαor
M=MA+NAR( 1 −cosθ)+∫θ0P
πRsinα[R−Rcos(θ−α)]Rdα