5.4Application to the Solution of Statically Indeterminate Systems 133
Fig.5.15
Distribution of bending moment in a doubly symmetric ring.
normalforceNA.Weproceed,asinthepreviousexample,bywritingdownthetotalcomplementary
energyCofthesystem.Then,neglectingshearstrains
C=
∫
ring
∫M
0
dθdM−P (i)
inwhich isthedeflectionofthepointofapplicationofPrelativetothetopoftheframe.NotethatMA
andNAdonotcontributetothecomplementofthepotentialenergyofthesystem,since,bysymmetry,
therotationandhorizontaldisplacementsatAarezero.Fromtheprincipleofthestationaryvalueof
thetotalcomplementaryenergy,
∂C
∂MA
=
∫
ring
dθ
∂M
∂MA
=0(ii)
and
∂C
∂NA
=
∫
ring
dθ
∂M
∂NA
=0(iii)
Thebendingmomentataradialsectioninclinedatanangleθtotheverticaldiameteris,fromFig.5.16(c),
M=MA+NAR( 1 −cosθ)+
∫θ
0
qBDRdα
or
M=MA+NAR( 1 −cosθ)+
∫θ
0
P
πR
sinα[R−Rcos(θ−α)]Rdα