5.10 The Reciprocal Theorem 153
P 2 followedbyP 1 ,wehave
U 2 =
P 2
2
(a 22 P 2 )+
P 1
2
(a 11 P 1 )+P 2 (a 21 P 1 ) (5.27)
Bytheprincipleofsuperposition,thestrainenergystoredisindependentoftheorderinwhichthe
loadsareapplied.Hence,
U 1 =U 2
anditfollowsthat
a 12 =a 21 (5.28)
Thus,initssimplestformthereciprocaltheoremstatesthat
Thedeflectionatapoint1inagivendirectionduetoaunitloadatapoint2inaseconddirectionis
equaltothedeflectionatthepoint2intheseconddirectionduetoaunitloadatthepoint1inthe
firstdirection.
Inasimilarmanner,wederivetherelationshipbetweenmomentsandrotations,thus
The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at the point 2
producedbyaunitmomentatthepoint1.
Finally,wehave
Therotationatapoint1duetoaunitloadatapoint2isnumericallyequaltothedeflectionatthe
point2inthedirectionoftheunitloadduetoaunitmomentatthepoint1.
Example 5.12
Acantilever800mmlongwithaprop500mmfromthewalldeflectsinaccordancewiththefollowing
observationswhenapointloadof40Nisappliedtoitsend.
Distance(mm) 0 100 200 300 400 500 600 700 800
Deflection(mm) 0 −0.3 −1.4 −2.5 −1.9 0 2.3 4.8 10.6
Whatwillbetheangularrotationofthebeamatthepropduetoa30Nloadapplied200mmfromthe
wall,togetherwitha10Nloadapplied350mmfromthewall?
TheinitialdeflectedshapeofthecantileverisplottedasshowninFig.5.27(a)andthedeflectionsat
DandEproducedbythe40Nloaddetermined.Thesolutionthenproceedsasfollows.
DeflectionatDdueto40NloadatC=−1.4mm.
Hence,fromthereciprocaltheorem,thedeflectionatCduetoa40NloadatD=−1.4mm.
ItfollowsthatthedeflectionatCduetoa30NloadatD=−^34 ×1.4=−1.05mm.