5.11 Temperature Effects 157Fig.5.31
(a) Linear temperature gradient applied to beam element; (b) bending of beam element due to temperature
gradient.
Wemaynowapplytheprincipleofthestationaryvalueofthetotalcomplementaryenergyinconjunction
withtheunitloadmethodtodeterminethedeflection (^) Te,duetothetemperatureofanypointofthe
beamshowninFig.5.30.Wehaveseenthattheprecedingprincipleisequivalenttotheapplicationof
theprincipleofvirtualworkwherevirtualforcesactthroughrealdisplacements.Therefore,wemay
specifythatthedisplacementsarethoseproducedbythetemperaturegradient,whilethevirtualforce
system is the unit load. Thus, the deflection (^) Te,Bof the tip of the beam is found by writing down
theincrementintotalcomplementaryenergycausedbytheapplicationofavirtualunitloadatBand
equatingtheresultingexpressiontozero(seeEqs.(5.7)and(5.12)).Thus,
δC=
∫
LM 1 dθ− (^1) Te,B= 0
or
(^) Te,B=
∫
LM 1 dθ (5.31)whereM 1 isthebendingmomentatanysectionduetotheunitload.SubstitutingfordθfromEq.(5.30),
wehave
(^) Te,B=
∫
LM 1
αt
hdz (5.32)wheretcan vary arbitrarily along the span of the beam but only linearly with depth. For a beam
supporting some form of external loading, the total deflection is given by the superposition of the
temperaturedeflectionfromEq.(5.32)andthebendingdeflectionfromEq.(5.21);thus,
=∫
LM 1
(
M 0
EI
+
αt
h)
dz (5.33)