156 CHAPTER 5 Energy Methods
5.11 TemperatureEffects.................................................................................
Auniformtemperatureappliedacrossabeamsectionproducesanexpansionofthebeam,asshownin
Fig. 5.29, provided there are no constraints. However, a linear temperature gradient across the beam
sectioncausestheupperfibersofthebeamtoexpandmorethanthelowerones,producingabending
strainasshowninFig.5.30withouttheassociatedbendingstresses,againprovidednoconstraintsare
present.
Consideranelementofthebeamofdepthhandlengthδzsubjectedtoalineartemperaturegradient
overitsdepth,asshowninFig.5.31(a).Theuppersurfaceoftheelement increasesinlengthtoδz( 1 +αt)
(seeSection1.15.1)whereαisthecoefficientoflinearexpansionofthematerialofthebeam.Thus,
fromFig.5.31(b),
R
δz
=
R+h
δz( 1 +αt)
giving
R=h/αt (5.29)
Also,
δθ=δz/R
sothatfromEq.(5.29),
δθ=
δzαt
h
(5.30)
Fig.5.29
Expansion of beam due to uniform temperature.
Fig.5.30
Bending of beam due to linear temperature gradient.