Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

170 CHAPTER 6 Matrix Methods


Amoredifficulttypeofstructuretoidealizeisthecontinuumstructure;inthiscategoryaredams,
plates,shells,and,obviously,aircraftfuselageandwingskins.Amethod,extendingthematrixtechnique
forskeletalstructures,ofrepresentingcontinuabyanydesirednumberofelementsconnectedattheir
nodeswasdevelopedbyCloughetal.[Ref.2]attheBoeingAircraftCompanyandtheUniversityof
BerkeleyinCalifornia.Theelementsmaybeofanydesiredshape,butthesimplest,usedinplanestress
problems,arethetriangularandquadrilateralelements.Weshalldiscussthefiniteelementmethod,as
itisknown,ingreaterdetaillater.
Initially, we shall develop the matrix stiffness method of solution for simple skeletal and beam
structures.Thefundamentalsofmatrixalgebraareassumed.


6.1 Notation...............................................................................................


Generally, we shall consider structures subjected to forces, Fx,1,Fy,1,Fz,1,Fx,2,Fy,2,Fz,2,...,
Fx,n,Fy,n,Fz,n,atnodes1,2,...,natwhichthedisplacementsareu 1 ,v 1 ,w 1 ,u 2 ,v 2 ,w 2 ,...,un,vn,wn.
The numerical suffixes specify nodes, while the algebraic suffixes relate the direction of the forces
toanarbitrarysetofaxes,x,y,z.Nodaldisplacementsu,v,wrepresentdisplacementsinthepositive
directionsofthex,y,andzaxes,respectively.Theforcesandnodaldisplacementsarewrittenascolumn
matrices(alternativelyknownascolumnvectors)

⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎨


⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎩

Fx,1
Fy,1
Fz,1
Fx,2
Fy,2
Fz,2
..
.
Fx,n
Fy,n
Fz,n


⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎭


⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

u 1
v 1
w 1
u 2
v 2
w 2
..
.
un
vn
wn


⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎭

which,whenonceestablishedforaparticularproblem,maybeabbreviatedto


{F}{δ}

Thegeneralizedforcesystem{F}cancontainmomentsMandtorquesTinadditiontodirectforces,
in which case{δ}includes rotationsθ. Therefore, in referring simply to a nodal force system, we
imply the possible presence of direct forces, moments, and torques, while the corresponding nodal
displacementscanbetranslationsandrotations.Foracompletestructure,thenodalforcesandnodal
displacementsarerelatedthroughastiffnessmatrix[K].Weshallseethat,ingeneral,


{F}=[K]{δ} (6.1)
Free download pdf