Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

172 CHAPTER 6 Matrix Methods


Bysuperpositionofthesetwoconditions,weobtainrelationshipsbetweentheappliedforcesandthe
nodaldisplacementsforthestatewhenu 1 =u 1 andu 2 =u2.Thus,


Fx,1=ku 1 −ku 2
Fx,2=−ku 1 +ku 2

}

(6.5)

WritingEq.(6.5)inmatrixform,wehave


{
Fx,1
Fx,2

}

=

[

k −k
−kk

]{

u 1
u 2

}

(6.6)

andbycomparingwithEq.(6.1),weseethatthestiffnessmatrixforthisspringelementis


[K]=

[

k −k
−kk

]

(6.7)

whichisasymmetricmatrixoforder2×2.


6.3 StiffnessMatrixforTwoElasticSpringsinLine.................................................


Bearinginmindtheresultsoftheprevioussection,weshallnowproceed,initiallybyasimilarprocess,
toobtainthestiffnessmatrixofthecompositetwo-springsystemshowninFig.6.2.Thenotationand
signconventionfortheforcesandnodaldisplacementsareidenticaltothosespecifiedinSection6.1.
First,letussupposethatu 1 =u 1 andu 2 =u 3 =0.Bycomparingthesingle-springcase,wehave


Fx,1=kau 1 =−Fx,2 (6.8)

but,inaddition,Fx,3=0,sinceu 2 =u 3 =0.
Second,weputu 1 =u 3 =0andu 2 =u 2 .Clearly,inthiscase,themovementofnode2takesplace
againstthecombinedspringstiffnesseskaandkb.Hence,


Fx,2=(ka+kb)u 2
Fx,1=−kau 2 , Fx,3=−kbu 2

}

(6.9)

Hence,thereactiveforceFx,1(=−kau 2 )isnotdirectlyaffectedbythefactthatnode2isconnectedto
node3,butitisdeterminedsolelybythedisplacementofnode2.Similarconclusionsaredrawnforthe
reactiveforceFx,3.


Fig.6.2


Stiffness matrix for a two-spring system.

Free download pdf