Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.7Stiffness Matrix for a Uniform Beam 187

whichisoftheform


{F}=[Kij]{δ}

where[Kij]isthestiffnessmatrixforthebeam.
It is possible to write Eq. (6.44) in an alternative form such that the elements of [Kij] are pure
numbers.Thus,

⎪⎪

⎪⎪


Fy,i
Mi/L
Fy,j
Mj/L


⎪⎪


⎪⎪


=

EI

L^3





12 − 6 − 12 − 6

−64 62

−12 6 12 6

−62 64






⎪⎪


⎪⎪


vi
θiL
vj
θjL


⎪⎪


⎪⎪


ThisformofEq.(6.44)isparticularlyusefulinnumericalcalculationsforanassemblageofbeamsin
whichEI/L^3 isconstant.
Equation(6.44)isderivedforabeamwhoseaxisisalignedwiththexaxissothatthestiffnessmatrix
definedbyEq.(6.44)isactually[Kij]thestiffnessmatrixreferredtoalocalcoordinatesystem.Ifthe
beamispositionedinthexyplanewithitsaxisarbitrarilyinclinedtothexaxis,thenthexandyaxes
formaglobalcoordinatesystemanditbecomesnecessarytotransformEq.(6.44)toallowforthis.The
procedureissimilartothatforthepin-jointedframeworkmemberofSection6.4inthat[Kij]mustbe
expandedtoallowforthefactthatnodaldisplacements ̄uiandu ̄j,whichareirrelevantforthebeamin
localcoordinates,havecomponentsui,vianduj,vjinglobalcoordinates.Thus,


[Kij]=EI

ui vi θi uj vj θj
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
00 000 0
012 /L^3 − 6 /L^20 − 12 /L^3 − 6 /L^2
0 − 6 /L^24 /L 06 /L^22 /L
00 000 0
0 − 12 /L^36 /L^2012 /L^36 /L^2
0 − 6 /L^22 /L 06 /L^24 /L

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(6.45)

Wemaydeducethetransformationmatrix[T]fromEq.(6.24)ifwerememberthatalthoughuandv
transforminexactlythesamewayasinthecaseofapin-jointedmember,therotationsθremainthe
sameineitherlocalorglobalcoordinates.
Hence,


[T]=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

λμ 0000
−μλ 0000
001000
000 λμ 0
000 −μλ 0
000001

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(6.46)

whereλandμhavepreviouslybeendefined.Thus,


[Kij]=[T]T[Kij][T] (seeSection6.4)
Free download pdf