6.7Stiffness Matrix for a Uniform Beam 187
whichisoftheform
{F}=[Kij]{δ}
where[Kij]isthestiffnessmatrixforthebeam.
It is possible to write Eq. (6.44) in an alternative form such that the elements of [Kij] are pure
numbers.Thus,
⎧
⎪⎪
⎨
⎪⎪
⎩
Fy,i
Mi/L
Fy,j
Mj/L
⎫
⎪⎪
⎬
⎪⎪
⎭
=
EI
L^3
⎡
⎢
⎢
⎣
12 − 6 − 12 − 6
−64 62
−12 6 12 6
−62 64
⎤
⎥
⎥
⎦
⎧
⎪⎪
⎨
⎪⎪
⎩
vi
θiL
vj
θjL
⎫
⎪⎪
⎬
⎪⎪
⎭
ThisformofEq.(6.44)isparticularlyusefulinnumericalcalculationsforanassemblageofbeamsin
whichEI/L^3 isconstant.
Equation(6.44)isderivedforabeamwhoseaxisisalignedwiththexaxissothatthestiffnessmatrix
definedbyEq.(6.44)isactually[Kij]thestiffnessmatrixreferredtoalocalcoordinatesystem.Ifthe
beamispositionedinthexyplanewithitsaxisarbitrarilyinclinedtothexaxis,thenthexandyaxes
formaglobalcoordinatesystemanditbecomesnecessarytotransformEq.(6.44)toallowforthis.The
procedureissimilartothatforthepin-jointedframeworkmemberofSection6.4inthat[Kij]mustbe
expandedtoallowforthefactthatnodaldisplacements ̄uiandu ̄j,whichareirrelevantforthebeamin
localcoordinates,havecomponentsui,vianduj,vjinglobalcoordinates.Thus,
[Kij]=EI
ui vi θi uj vj θj
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
00 000 0
012 /L^3 − 6 /L^20 − 12 /L^3 − 6 /L^2
0 − 6 /L^24 /L 06 /L^22 /L
00 000 0
0 − 12 /L^36 /L^2012 /L^36 /L^2
0 − 6 /L^22 /L 06 /L^24 /L
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
(6.45)
Wemaydeducethetransformationmatrix[T]fromEq.(6.24)ifwerememberthatalthoughuandv
transforminexactlythesamewayasinthecaseofapin-jointedmember,therotationsθremainthe
sameineitherlocalorglobalcoordinates.
Hence,
[T]=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
λμ 0000
−μλ 0000
001000
000 λμ 0
000 −μλ 0
000001
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
(6.46)
whereλandμhavepreviouslybeendefined.Thus,
[Kij]=[T]T[Kij][T] (seeSection6.4)