Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.7Stiffness Matrix for a Uniform Beam 191

Example 6.2
DeterminetheunknownnodaldisplacementsandforcesinthebeamshowninFig.6.11.Thebeamis
ofuniformsectionthroughout.


The beam may be idealized into two beam elements, 1–2 and 2–3. From Fig. 6.11, we see that
v 1 =v 3 =0,Fy,2=−W,M 2 =+M.Therefore,eliminatingrowsandcolumnscorrespondingtozero
displacementsfromEq.(6.53),weobtain

⎪⎪
⎪⎨


⎪⎪
⎪⎩

Fy,2=−W
M 2 =M
M 1 = 0
M 3 = 0


⎪⎪

⎪⎬

⎪⎪

⎪⎭

=EI






27 / 2 L^39 / 2 L^26 /L^2 − 3 / 2 L^2

9 / 2 L^26 /L 2 /L 1 /L

6 /L^22 /L 4 /L 0

− 3 / 2 L^21 /L 02 /L







⎪⎪

⎪⎨

⎪⎪

⎪⎩

v 2
θ 2
θ 1
θ 3


⎪⎪

⎪⎬

⎪⎪

⎪⎭

(i)

Equation(i)maybewrittensuchthattheelementsof[K]arepurenumbers

⎪⎪

⎪⎪


Fy,2=−W
M 2 /L=M/L
M 1 /L= 0
M 3 /L= 0


⎪⎪


⎪⎪


=

EI

2 L^3





27 9 12 − 3

912 4 2

12 4 8 0

− 3204






⎪⎪


⎪⎪


v 2
θ 2 L
θ 1 L
θ 3 L


⎪⎪


⎪⎪


(ii)

ExpandingEq.(ii)bymatrixmultiplication,wehave
{
−W
M/L


}

=

EI

2 L^3

([

27 9

912

]{

v 2
θ 2 L

}

+

[

12 − 3

42

]{

θ 1 L
θ 3 L

})

(iii)

and
{
0
0


}

=

EI

2 L^3

([

12 4

− 32

]{

v 2
θ 2 L

}

+

[

80

04

]{

θ 1 L
θ 3 L

})

(iv)

Equation(iv)gives


{
θ 1 L
θ 3 L

}

=



−^32 −^12

−^34 −^12



{

v 2
θ 2 L

}

(v)

Fig.6.11


Beam of Example 6.2.

Free download pdf