Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.8 Finite Element Method for Continuum Structures 195

FromEqs.(6.54)and(6.56),wecanwritedownexpressionsforthenodaldisplacementsvi,θiandvj,θj
atx=0andx=L,respectively.Hence,


vi=α 1
θi=α 2
vj=α 1 +α 2 L+α 3 L^2 +α 4 L^3
θj=α 2 + 2 α 3 L+ 3 α 4 L^2


⎪⎪


⎪⎪


(6.57)

WritingEqs.(6.57)inmatrixformgives

⎪⎪

⎪⎪


vi
θi
vj
θj


⎪⎪


⎪⎪


=





100 0

010 0

1 LL^2 L^3

012 L 3 L^2






⎪⎪


⎪⎪


α 1
α 2
α 3
α 4


⎪⎪


⎪⎪


(6.58)

or


{δe}=[A]{α} (6.59)

ThethirdstepfollowsdirectlyfromEqs.(6.58)and(6.55)inthatweexpressthedisplacementat
anypointinthebeamelementintermsofthenodaldisplacements.UsingEq.(6.59),weobtain


{α}=[A−^1 ]{δe} (6.60)

SubstitutinginEq.(6.55)gives


{v(x)}=[f(x)][A−^1 ]{δe} (6.61)

where[A−^1 ]isobtainedbyinverting[A]inEq.(6.58)andmaybeshowntobegivenby


[A−^1 ]=





1000

0100

− 3 /L^2 − 2 /L 3 /L^2 − 1 /L

2 /L^31 /L^2 − 2 /L^31 /L^2




⎦ (6.62)

Instepfour,werelatethestrain{ε(x)}atanypointxintheelementtothedisplacement{v(x)}and
hencetothenodaldisplacements{δe}.Sinceweareconcernedherewithbendingdeformationsonly,
wemayrepresentthestrainbythecurvature∂^2 v/∂x^2 .Hence,fromEq.(6.54),


∂^2 v
∂x^2

= 2 α 3 + 6 α 4 x (6.63)

orinmatrixform


{ε}=[0026x]


⎪⎪


⎪⎪


α 1
α 2
α 3
α 4


⎪⎪


⎪⎪


(6.64)
Free download pdf