Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

200 CHAPTER 6 Matrix Methods


compatibilityofdisplacementalongtheedgesofadjacentelements.WritingEqs.(6.82)inmatrixform
gives


{

u(x,y)
v(x,y)

}

=

[

1 xy 000
0001 xy

]


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪⎩

α 1
α 2
α 3
α 4
α 5
α 6


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪⎭

(6.83)

ComparingEq.(6.83)withEq.(6.55),weseethatitisoftheform
{
u(x,y)
v(x,y)


}

=[f(x,y)]{α} (6.84)

SubstitutingvaluesofdisplacementandcoordinatesateachnodeinEq.(6.84),wehavefornodei
{
ui
vi


}

=

[

1 xi yi 000
0001 xi yi

]

{α}

Similarexpressionsareobtainedfornodesjandksothatforthecompleteelementweobtain

⎪⎪
⎪⎪
⎪⎪

⎪⎪
⎪⎪
⎪⎪


ui
vi
uj
vj
uk
vk


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

1 xi yi 00 0
0001 xi yi
1 xj yj 00 0
0001 xj yj
1 xk yk 00 0
0001 xk yk

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


α 1
α 2
α 3
α 4
α 5
α 6


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


(6.85)

FromEq.(6.81)andbycomparingwithEqs.(6.58)and(6.59),weseethatEq.(6.85)takestheform


{δe}=[A]{α}

Hence(step3)weobtain


{α}=[A−^1 ]{δe} (comparewithEq.(6.60))

The inversion of [A], defined in Eq. (6.85), may be achieved algebraically as illustrated in Example
6.3.Alternatively,theinversionmaybecarriedoutnumericallyforaparticularelementbycomputer.
Substitutingfor{α}fromtheprecedingintoEq.(6.84)gives
{
u(x,y)
v(x,y)


}

=[f(x,y)][A−^1 ]{δe} (6.86)

(comparewithEq.(6.61)).
Thestrainsintheelementare


{ε}=




εx
εy
γxy




(6.87)
Free download pdf