14 CHAPTER 1 Basic Elasticity
Fig.1.11
Stress system on two-dimensional element of the beam of Example 1.2.
Thestresssystemactingonatwo-dimensionalrectangularelementatthepointisshowninFig.1.11.
Notethatsincetheelementispositionedatthebottomofthebeam,theshearstressduetothetorqueis
inthedirectionshownandisnegative(seeFig.1.8).
AgainσnandτmaybefoundfromfirstprinciplesorbydirectsubstitutioninEqs.(1.8)and(1.9).
Notethatθ= 30 ◦,σy=0,andτxy=−28.3N/mm^2 ,thenegativesignisarisingfromthefactthatitisin
theoppositedirectiontoτxyasinFig.1.8.
Then,
σn=−21.2cos^230 ◦−28.3sin60◦=−40.4N/mm^2 (compression)
τ=(−21.2/ 2 )sin60◦+28.3cos60◦=5.0N/mm^2 (actinginthedirectionAB)
DifferentanswerswouldhavebeenobtainediftheplaneABhadbeenchosenontheoppositeside
ofAC.
1.7 PrincipalStresses....................................................................................
Forgivenvaluesofσx,σy,andτxy,inotherwordsgivenloadingconditions,σnvarieswiththeangleθ
andattainsamaximumorminimumvaluewhendσn/dθ=0.FromEq.(1.8),
dσn
dθ
=− 2 σxcosθsinθ+ 2 σysinθcosθ+ 2 τxycos2θ= 0
Hence,
−(σx−σy)sin2θ+ 2 τxycos2θ= 0
or
tan2θ=
2 τxy
σx−σy