7.3 Plates Subjected to a Distributed Transverse Load 233
inwhichmrepresentsthenumberofhalfwavesinthexdirectionandnrepresentsthecorresponding
number in theydirection. Further,Amnare unknown coefficients, which must satisfy the preceding
differentialequationandmaybedeterminedasfollows.
Wemayalsorepresenttheloadq(x,y)byaFourierseries;thus,
q(x,y)=
∑∞
m= 1
∑∞
n= 1
amnsin
mπx
a
sin
nπy
b
(7.28)
Aparticularcoefficientam′n′iscalculatedbyfirstmultiplyingbothsidesofEq.(7.28)bysin(m′πx/a)
sin(n′πy/b)andintegratingwithrespecttoxfrom0toaandwithrespecttoyfrom0tob.Thus,
∫a
0
∫b
0
q(x,y)sin
m′πx
a
sin
n′πy
b
dxdy
=
∑∞
m= 1
∑∞
n= 1
∫a
0
∫b
0
amnsin
mπx
a
sin
m′πx
a
sin
nπy
b
sin
n′πy
b
dxdy
=
ab
4
am′n′
since
∫a
0
sin
mπx
a
sin
m′πx
a
dx=0whenm
=m′
=
a
2
when m=m′
and
∫b
0
sin
nπy
b
sin
n′πy
b
dy=0whenn
=n′
=
b
2
when n=n′
Itfollowsthat
am′n′=
4
ab
∫a
0
∫b
0
q(x,y)sin
m′πx
a
sin
n′πy
b
dxdy (7.29)
Substitutingnowforwandq(x,y)fromEqs.(7.27)and(7.28)intothedifferentialequationforw,we
have
∑∞
m= 1
∑∞
n= 1
{
Amn
[(
mπ
a
) 4
+ 2
(mπ
a
) 2 (nπ
b
) 2
+
(nπ
b
) 4 ]
−
amn
D
}
sin
mπx
a
sin
nπy
b