234 CHAPTER 7 Bending of Thin Plates
Thisequationisvalidforallvaluesofxandysothat
Amn[(
mπ
a) 4
+ 2
(mπa) 2 (nπb) 2
+
(nπb) 4 ]
−
amn
D= 0
orinalternativeform
Amnπ^4(
m^2
a^2+
n^2
b^2) 2
−
amn
D= 0
giving
Amn=1
π^4 Damn
[(m^2 /a^2 )+(n^2 /b^2 )]^2Hence,
w=1
π^4 D∑∞
m= 1∑∞
n= 1amn
[(m^2 /a^2 )+(n^2 /b^2 )]^2sinmπx
asinnπy
b(7.30)
inwhichamnisobtainedfromEq.(7.29).Equation(7.30)isthegeneralsolutionforathinrectangular
plateunderatransverseloadq(x,y).
Example 7.1
Athinrectangularplatea×bissimplysupportedalongitsedgesandcarriesauniformlydistributedload
ofintensityq 0 .Determinethedeflectedformoftheplateandthedistributionofbendingmoment.
Sinceq(x,y)=q 0 ,wefindfromEq.(7.29)thatamn=4 q 0
ab∫a0∫b0sinmπx
asinnπy
bdxdy=16 q 0
π^2 mn,
wheremandnareoddintegers.Formorneven,amn=0.Hence,fromEq.(7.30)
w=16 q 0
π^6 D∑∞
m=1,3,5∑∞
n=1,3,5sin(mπx/a)sin(nπy/b)
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2(i)Themaximumdeflectionoccursatthecenteroftheplate,wherex=a/2,y=b/2.Thus,
wmax=16 q 0
π^6 D∑∞
m=1,3,5∑∞
n=1,3,5sin(mπ/ 2 )sin(nπ/ 2 )
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2(ii)Thisseriesisfoundtoconvergerapidly,thefirstfewtermsgivingasatisfactoryanswer.Forasquare
plate,takingν=0.3,summationofthefirstfourtermsoftheseriesgives
wmax=0.0443q 0a^4
Et^3