234 CHAPTER 7 Bending of Thin Plates
Thisequationisvalidforallvaluesofxandysothat
Amn
[(
mπ
a
) 4
+ 2
(mπ
a
) 2 (nπ
b
) 2
+
(nπ
b
) 4 ]
−
amn
D
= 0
orinalternativeform
Amnπ^4
(
m^2
a^2
+
n^2
b^2
) 2
−
amn
D
= 0
giving
Amn=
1
π^4 D
amn
[(m^2 /a^2 )+(n^2 /b^2 )]^2
Hence,
w=
1
π^4 D
∑∞
m= 1
∑∞
n= 1
amn
[(m^2 /a^2 )+(n^2 /b^2 )]^2
sin
mπx
a
sin
nπy
b
(7.30)
inwhichamnisobtainedfromEq.(7.29).Equation(7.30)isthegeneralsolutionforathinrectangular
plateunderatransverseloadq(x,y).
Example 7.1
Athinrectangularplatea×bissimplysupportedalongitsedgesandcarriesauniformlydistributedload
ofintensityq 0 .Determinethedeflectedformoftheplateandthedistributionofbendingmoment.
Sinceq(x,y)=q 0 ,wefindfromEq.(7.29)that
amn=
4 q 0
ab
∫a
0
∫b
0
sin
mπx
a
sin
nπy
b
dxdy=
16 q 0
π^2 mn
,
wheremandnareoddintegers.Formorneven,amn=0.Hence,fromEq.(7.30)
w=
16 q 0
π^6 D
∑∞
m=1,3,5
∑∞
n=1,3,5
sin(mπx/a)sin(nπy/b)
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2
(i)
Themaximumdeflectionoccursatthecenteroftheplate,wherex=a/2,y=b/2.Thus,
wmax=
16 q 0
π^6 D
∑∞
m=1,3,5
∑∞
n=1,3,5
sin(mπ/ 2 )sin(nπ/ 2 )
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2
(ii)
Thisseriesisfoundtoconvergerapidly,thefirstfewtermsgivingasatisfactoryanswer.Forasquare
plate,takingν=0.3,summationofthefirstfourtermsoftheseriesgives
wmax=0.0443q 0
a^4
Et^3