Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

234 CHAPTER 7 Bending of Thin Plates


Thisequationisvalidforallvaluesofxandysothat


Amn

[(


a

) 4

+ 2

(mπ

a

) 2 (nπ

b

) 2

+

(nπ

b

) 4 ]


amn
D

= 0

orinalternativeform


Amnπ^4

(

m^2
a^2

+

n^2
b^2

) 2


amn
D

= 0

giving


Amn=

1

π^4 D

amn
[(m^2 /a^2 )+(n^2 /b^2 )]^2

Hence,


w=

1

π^4 D

∑∞

m= 1

∑∞

n= 1

amn
[(m^2 /a^2 )+(n^2 /b^2 )]^2

sin

mπx
a

sin

nπy
b

(7.30)

inwhichamnisobtainedfromEq.(7.29).Equation(7.30)isthegeneralsolutionforathinrectangular
plateunderatransverseloadq(x,y).


Example 7.1
Athinrectangularplatea×bissimplysupportedalongitsedgesandcarriesauniformlydistributedload
ofintensityq 0 .Determinethedeflectedformoftheplateandthedistributionofbendingmoment.


Sinceq(x,y)=q 0 ,wefindfromEq.(7.29)that

amn=

4 q 0
ab

∫a

0

∫b

0

sin

mπx
a

sin

nπy
b

dxdy=

16 q 0
π^2 mn

,

wheremandnareoddintegers.Formorneven,amn=0.Hence,fromEq.(7.30)


w=

16 q 0
π^6 D

∑∞

m=1,3,5

∑∞

n=1,3,5

sin(mπx/a)sin(nπy/b)
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2

(i)

Themaximumdeflectionoccursatthecenteroftheplate,wherex=a/2,y=b/2.Thus,


wmax=

16 q 0
π^6 D

∑∞

m=1,3,5

∑∞

n=1,3,5

sin(mπ/ 2 )sin(nπ/ 2 )
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2

(ii)

Thisseriesisfoundtoconvergerapidly,thefirstfewtermsgivingasatisfactoryanswer.Forasquare
plate,takingν=0.3,summationofthefirstfourtermsoftheseriesgives


wmax=0.0443q 0

a^4
Et^3
Free download pdf